Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T23:16:05.009Z Has data issue: false hasContentIssue false

From parasitoid behavior to biological control: applied behavioral ecology

Published online by Cambridge University Press:  02 April 2012

Bernard D. Roitberg*
Affiliation:
Behavioral Ecology Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
*

Abstract

A hypothetical parasitoid mass rearing facility is used to unite principles from behavioral ecology and biological control. The key to the problem is variation in the tendency of solitary parasitoids to superparasitize. Superparasitism affects individual and population parasitoid productivity, though not necessarily to the same degree. Herein, the interest is in determining conditions that will maximize parasitoid population productivity when superparasitism varies. To accomplish this, a combination of graphical marginal analysis (to provide an economic context), dynamic optimization models (to determine individual parasitoid superparasitism tendency), and functional response models (to determine parasitoid population productivity) has been used. Marginal analysis shows that marginal returns decrease with an increase in the number of parasitoids released but that the slope of the marginal returns curve depends upon the sensitivity of superparasitism to environmental conditions. In addition, results show that parasitoid responses can be highly nonlinear and, as such, can greatly affect optimal numbers of parasitoids released in a nonintuitive manner. This behavioral ecology approach greatly increases efficiency and predictability of parasitoid production.

Résumé

L'exemple d'une installation hypothétique d'élevage en masse de parasitoïdes me permet de relier les principes de l'écologie comportementale à ceux du contrôle biologique. Le facteur clé du problème est la variation de la tendance des parasitoïdes solitaires à pratiquer l'hyperparasitisme qui affecte la productivité des parasitoïdes, tant à l'échelle de l'individu que de la population, bien que pas nécessairement à la même intensité. L'objectif de l'étude est de déterminer les conditions qui permettent une productivité maximale des parasitoïdes à l'échelle de la population lorsque l'hyperparasitisme est variable; les méthodes consistent en une combinaison d'analyses graphiques des marges (qui fournissent un contexte économique), de modèles dynamiques d'optimization (qui mesurent les tendances individuelles à l'hyperparasitisme) et de modèles de réponses fonctionnelles (qui déterminent la productivité des populations de parasitoïdes). L'analyse des marges indique que les marges de profit déclinent en fonction de l'augmentation du nombre de parasitoïdes libérés, mais que la pente de la courbe des marges de profit dépend de la relation entre l'hyperparasitisme et les conditions du milieu. De plus, les résultats montrent que la réponse des parasitoïdes peut être fortement non linéaire et ainsi qu'elle affecte le nombre optimal de parasitoïdes à libérer d'une manière qui ne correspond pas à ce qu'on imagine spontanément. Cette approche basée sur l'écologie comportementale augmente considérablement l'efficacité et le caractère prédictif de la production des parasitoïdes.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernstein, C. 2000. Host-parasitoid models: the story of a successful failure. pp 41–57 in Hochberg, M., Ives, A.R. (Eds), Parasitoid population biology. Princeton, New Jersey: Princeton University PressGoogle Scholar
Clark, C., Mangel, M. 2000. Dynamic state variable models in ecology: methods and applications. New York: Oxford University PressCrossRefGoogle Scholar
Ellers, J., Sevenster, J.G., Driessen, G. 2000. Egg load evolution in parasitoids. American Naturalist 156: 650–65CrossRefGoogle ScholarPubMed
Godfray, H.C. 1994. Parasitoids: behavioral and evolutionary ecology. Princeton, New Jersey: Princeton University PressCrossRefGoogle Scholar
Hassell, M.P. 1976. Arthropod predator–prey systems. pp 7193in May, R.M. (Ed), Theoretical ecology. Oxford, United Kingdom: Blackwell Scientific PublicationsGoogle Scholar
Heimpel, G.E. 2000. Effects of clutch size on host–parasitoid population dynamics. pp 2740in Hochberg, M., Ives, A.R. (Eds), Parasitoid population biology. Princeton, New Jersey: Princeton University PressCrossRefGoogle Scholar
Hindelang, T.J., Dascher, P. 1985. The IBM/PC guide to marginal analysis. Wayne, Pennsylvania: Banbury BooksGoogle Scholar
Holling, C.S. 1959. Some characteristics of simple types of predation and parasitism. The Canadian Entomologist 91: 385–98CrossRefGoogle Scholar
Mondor, E., Roitberg, B.D. 2000. Individual behaviour and population dynamics: lessons from aphid parasitoids. Entomologia Experimentalis et Applicata 97: 7581CrossRefGoogle Scholar
Murdoch, W.W., Briggs, C.J., Nisbet, R.M. 1997. Dynamical effects of host size- and parasitoid state-dependent attacks by parasitoids. Journal of Animal Ecology 66: 542–56CrossRefGoogle Scholar
Ode, P., Heinz, K.M. 2002. Host-size-dependent sex ratio theory and improving mass-reared parasitoid sex ratios. Biological Control 24: 3141CrossRefGoogle Scholar
Prasad, R., Roitberg, B., Henderson, D. 2002. The effect of rearing temperature on parasitism by Trichogramma sibericum Sorkina at ambient temperatures. Biological Control 25: 110–15CrossRefGoogle Scholar
Prokopy, R.J., Roitberg, B. 2004. Arthropod behavioral ecology and IPM. In Kogan, M., Jepson, P. (Eds), Perspectives in ecological theory and integrated pest management. In press.Google Scholar
Roitberg, B. 2000. Threats, flies and protocol gapes: can evolutionary ecology save biological control? pp 254–65 in Hochberg, M., Ives, A.R. (Eds), Parasitoid population biology. Princeton, New Jersey: Princeton University PressCrossRefGoogle Scholar
Roitberg, B., Sircom, J., Roitberg, C., van Alphen, J.J.M., Mangel, M. 1993. Life expectancy and reproduction. Nature (Lond.) 364: 108CrossRefGoogle ScholarPubMed
Roitberg, B., Boivin, G., Vet, L.E.M. 2001. Fitness, parasitoids, and biological control: an opinion. The Canadian Entomologist 133: 429–38CrossRefGoogle Scholar
Rosenheim, J.A. 1996. An evolutionary argument for egg limitation. Evolution 50: 2089–94CrossRefGoogle ScholarPubMed
Sutherland, W. 1996. From individual to population ecology. Oxford, United Kingdom: Oxford University PressGoogle Scholar
van Alphen, J.J.M., Visser, M.E. 1990. Superparasitism as an adaptive stategy for insect parasitoids. Annual Review of Entomology 35: 5979CrossRefGoogle Scholar
van Alphen, J.J.M., Bernstein, C., Driessen, G. 2003. Information acquisition and time allocation in insect parasitoids. Trends in Ecology and Evolution 18: 81–7CrossRefGoogle Scholar
Visser, M.E. 1995. The effect of competition on oviposition decisions of Leptopilina heterotoma (Hymenoptera: Eucoilidae). Animal Behaviour 49: 1677–87CrossRefGoogle Scholar