Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T16:44:09.303Z Has data issue: false hasContentIssue false

Foliage architecture explains oviposition preference of spruce budworm (Lepidoptera: Tortricidae) for white spruce over balsam fir

Published online by Cambridge University Press:  02 April 2012

Gary G. Grant
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, 1219 Queen Street E, Sault Ste. Marie, Ontario, Canada P6A 2E5 (e-mail: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I conducted dual-choice oviposition bioassays to test the hypothesis that spruce budworm, Choristoneura fumiferana (Clemens), prefer the foliage architecture (spatial arrangement of foliage needles) of white spruce (Picea glauca (Moench) Voss; Pinaceae) to that of balsam fir (Abies balsamea (L.) P. Mill.; Pinaceae). Needles of white spruce radiate around the twig axis, giving the foliage a round architecture. Needles of balsam fir typically radiate bilaterally from the twig axis, giving the foliage a flat architecture, although on some trees foliage needles radiate around the twig axis, giving the foliage a round architecture. In bioassays, females showed a 2.4:1 preference for white spruce over "flat" balsam fir foliage, but this preference was reduced significantly to a 1.2:1 ratio when balsam fir had a round architecture. Given a choice between "round" and "flat" balsam fir foliage, females preferred the "round" foliage by a 2.2:1 margin. A similar preference for the round architecture was also observed when artificial (plastic) foliage with the two types of needle arrangements were compared. I conclude that the spatial arrangement of foliage needles is a major factor responsible for the oviposition preference of spruce budworm for white spruce over balsam fir.

Résumé

Des bioessais de ponte à double choix ont servi à vérifier l'hypothèse selon laquelle la tordeuse des bourgeons de l'épinette, Choristoneura fumiferana (Clemens), préfère l'architecture du feuillage (l'arrangement spatial des aiguilles du feuillage) de l'épinette blanche (Picea glauca (Moench) Voss; Pinaceae) à celle du sapin baumier (Abies balsamea (L.) P. Mill.; Pinaceae). Les aiguilles de l'épinette blanche rayonnent autour de l'axe de la ramille, ce qui donne au feuillage une structure architecturale arrondie. Les aiguilles du sapin baumier s'étendent typiquement de chaque côté de l'axe de la ramille, ce qui donne une structure architecturale aplatie, bien que sur certains arbres les aiguilles du feuillage rayonnent autour de l'axe de la ramille, créant ainsi une structure architecturale arrondie. Dans les bioessais, les femelles montrent une préférence de 2,4:1 pour l'épinette blanche plutôt que pour le feuillage « aplati » du sapin baumier; cette préférence est réduite à 1,2:1 lorsque l'architecture foliaire du sapin baumier est « arrondie ». Dans un choix entre le feuillage « arrondi » et « aplati » du sapin baumier, les femelles préfèrent le feuillage « arrondi » par une facteur de 2,2:1. Une préférence semblable se manifeste pour la structure architecturale arrondie lors de comparaisons faites avec du feuillage artificiel (en plastique) présentant les deux types d'arrangement des aiguilles. On peut en conclure que l'arrangement spatial des aiguilles du feuillage est un facteur important pour expliquer la préférence de la tordeuse des bourgeons de l'épinette pour l'épinette blanche plutôt que pour le sapin baumier comme site de ponte.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

References

Bess, H.A. 1946. Staminate flowers and spruce budworm abundance. Dominion Department of Agriculture. Forest Insect Investigations. Bimonthly Progress Report, 2(2): 3–4.Google Scholar
Blais, J.R. 1952. The relationship of the spruce budworm (Choristoneura fumiferana, Clem.) to the flowering condition of balsam fir (Abies balsamea (L.) (Mill.). Canadian Journal of Zoology, 30: 129.CrossRefGoogle Scholar
Farrar, J.L. 1995. Trees in Canada. Fitzhenry & Whiteside Ltd, Markham, Ontario, and Canadian Forest Service, Ottawa, Ontario.Google Scholar
Grant, G.G., and Langevin, D. 1994. Oviposition responses of four Choristoneura (Lepidoptera: Tortricidae) species to chemical and physical stimuli associated with host and nonhost foliage. Environmental Entomology, 23: 447456.CrossRefGoogle Scholar
Grant, G.G., and Langevin, D. 1995. Oviposition deterrence, stimulation, and effect on clutch size of Choristoneura (Lepidoptera: Tortricidae) species by extract fractions of host and nonhost foliage. Environmental Entomology, 24: 16561663.CrossRefGoogle Scholar
Grant, G.G., and Langevin, D. 2002. Structure–activity relationships of phenolic and nonphenolic aromatic acids as oviposition stimuli for the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). In Proceedings of the meeting “Pheromones and other biological techniques for insect control in orchards and vineyards”, Samos, Greece, 25–29 September 2000. Edited by Witzgall, P., Mazomenos, B., and Konstantopoulou, M.. IOBC wprs Bulletin, 25(9).Google Scholar
Harlow, W.M., and Harrar, E.S. 1941. Textbook of dendrology. 2nd ed. McGraw-Hill Book Co., Inc., New York and London.Google Scholar
Jaynes, H.A., and Speers, C.F. 1949. Biological and ecological studies of the spruce budworm. Journal of Economic Entomology, 42: 221225.CrossRefGoogle Scholar
Leyva, K.J., Clancy, K.M., and Price, P.W. 2000. Oviposition preference and larval performance of the western spruce budworm (Lepidoptera: Tortricidae). Environmental Entomology, 29: 281289.CrossRefGoogle Scholar
Morris, R.F. 1955. The development of sampling techniques for forest insect defoliators, with particular reference to the spruce budworm. Canadian Journal of Zoology, 33: 225294.CrossRefGoogle Scholar
Peattie, D.C. 1966. A natural history of trees of eastern and central North America. Houghton Mifflin Co., Boston.Google Scholar
Petrides, G.A. 1958. A field guide to trees and shrubs. Houghton Mifflin Co., Boston.Google Scholar
Powell, J.A. 1964. Biological and taxonomic studies on Tortricine moths, with reference to the species in California. University of California Press, Berkeley and Los Angeles.Google Scholar
Renwick, J.A.A., and Radke, C. 1982. Ovipositional choice and larval survival of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Environmental Entomology, 11: 503505.CrossRefGoogle Scholar
Rivet, M.-P., and Albert, P.J. 1990. Oviposition behavior in the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Journal of Insect Behavior, 3: 395400.CrossRefGoogle Scholar
Scarr, T. 1991. Jack pine varies in susceptibility to defoliation by jack pine budworm. Ph.D. thesis, University of Toronto, Ontario.Google Scholar
Städler, E. 1974. Host plant stimuli affecting oviposition behavior of the eastern spruce budworm. Entomologia Experimentalis et Applicata, 17: 176188.CrossRefGoogle Scholar
White, J.H., and Hosie, R.C. 1977. The forest trees of Ontario. 6th ed. Ontario Ministry of Natural Resources, Toronto, Ontario.Google Scholar
Wilson, L.F. 1963. Host preference for oviposition by the spruce budworm in the Lake States. Journal of Economic Entomology, 56: 285288.CrossRefGoogle Scholar
Wilson, L.F., and Bean, J.L. 1963. Site of spruce budworm egg masses on their preferred hosts in the Lake States. Journal of Economic Entomology, 56: 574578.CrossRefGoogle Scholar