Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T05:12:33.282Z Has data issue: false hasContentIssue false

Flies (Diptera) as pollinators of two dioecious plants: behaviour and implications for plant mating

Published online by Cambridge University Press:  02 April 2012

Christopher J. Borkent*
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
Lawrence D. Harder
Affiliation:
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
*
1Corresponding author (e-mail: [email protected]).

Abstract

We consider the role of generalist Diptera in the pollination of two dioecious plant species, Clematis ligusticifolia Nutt. (Ranunculaceae) and Shepherdia canadensis (L.) Nutt. (Elaeagnaceae). In particular, we assess (i) whether or not generalist pollinators are unable to distinguish between the sexes of dioecious species and so visit the sexes at equivalent rates, and (ii) the number of flowers that generalist flies visit and revisit during a foraging bout, which would affect self-pollination if plants were hermaphroditic. We determined the visitation rate to each plant species during 10 min periods and recorded the number of flowers that individual pollinators visited and revisited per foraging bout. Diptera were the main pollinators, visiting both sexes at similar rates for both plant species. The main visitors to C. ligusticifolia were muscoid flies (small and large), Culicidae, and halictid bees. The number of flowers visited in this species varied with pollinator group, but groups did not differ in the frequency of revisits. Visitors to S. canadensis were primarily Syrphidae and Empididae. Neither the number of flowers visited nor the number of revisits differed between these two pollinator groups. The results for each plant species are discussed and contrasted, particularly with other studies of the behaviour of generalist and specialist pollinators. We compare the observed pollinator behaviours, and their implications for plant mating, with the various theories of the role of pollinators in the evolution of the dioecious breeding system in plants.

Résumé

Nous étudions le rôle des diptères généralistes dans la pollinisation de deux espèces de plantes dioïques, Clematis ligusticifolia Nutt. (Ranunculaceae) et Shepherdia canadensis (L.) Nutt. (Eleagnaceae). En particulier, (i) nous déterminons si les pollinisateurs généralistes sont capables ou non de distinguer les sexes des plantes dioïques et, en conséquence, de visiter les deux sexes à des fréquences équivalentes et (ii) nous évaluons le nombre de fleurs que les mouches généralistes visitent une première fois et visitent de nouveau durant un même épisode de recherche de nourriture, ce qui affecterait l'auto-pollinisation si les plantes étaient hermaphrodites. Nous avons déterminé la fréquence des visites à chacune des espèces durant des périodes de 10 minutes et nous avons noté le nombre de fleurs que chaque pollinisateur visite et visite de nouveau au cours d'un même épisode d'alimentation. Les diptères constituent les pollinisateurs principaux qui visitent les deux sexes des deux espèces de plantes à des fréquences similaires. Les visiteurs principaux de C. lusticifolia sont des mouches muscoïdes, petites et grandes, ainsi que des Culicidae et des abeilles Halictidae. Chez cette espèce, le nombre de fleurs visitées varie d'un groupe de pollinisateurs à un autre, mais il n'y a pas de différences entre les groupes dans la fréquence des visites subséquentes. Les visiteurs de S. canadensis sont surtout des Syrphidae et des Empididae. Ni le nombre de fleurs visitées, ni le nombre de visites subséquentes aux mêmes fleurs ne diffèrent chez ces deux groupes de pollinisateurs. Nous comparons les résultats obtenus avec chacune des espèces de plantes et nous en discutons, particulièrement en regard d'autres études sur les comportements des pollinisateurs généralistes et spécialistes. Nous confrontons les comportements que nous avons observés chez les pollinisateurs et leurs conséquences sur la reproduction des plantes aux diverses théories sur le rôle des pollinisateurs dans l'évolution des systèmes dioïques de reproduction chez les plantes.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agren, J., Elmqvist, T., and Tunlid, A. 1986. Pollination by deceit, floral sex ratios, and seed set in dioecious Rubus chamaemorus L. Oecologia, 70: 332338.CrossRefGoogle Scholar
Ashman, T.-L. 2000. Pollinator selectivity and its implications for the evolution of dioecy and sexual dimorphism. Ecology, 81: 25772591.CrossRefGoogle Scholar
Ashman, T.-L., and Stanton, M.L. 1991. Seasonal variation in pollination dynamics of sexually dimorphic Sidalcea oregana ssp. spicata (Malvaceae). Ecology, 72: 9931003.Google Scholar
Bawa, K.S. 1980. Evolution of dioecy in flowering plants. Annual Review of Ecology and Systematics, 11: 1539.CrossRefGoogle Scholar
Bawa, K.S. 1994. Pollinators of tropical dioecious angiosperms: a reassessment? No, not yet. American Journal of Botany, 81: 456460.Google Scholar
Bawa, K.S., and Opler, P.A. 1975. Dioecism in tropical forest trees. Evolution, 29: 167179.Google Scholar
Beach, J.H. 1981. Pollinator foraging and the evolution of dioecy. American Naturalist, 118: 572577.Google Scholar
Bell, S.A., Lefebvre, L., Giraldeau, L.-A., and Weary, D. 1984. Partial preference of insects for the male flowers of an annual herb. Oecologia, 64: 287294.Google Scholar
Bernhardt, P., Sage, T., Weston, P., Azuma, H., Lam, M., Thien, L.B., and Bruhl, J. 2003. The pollination of Trimenia moorei (Trimeniaceae): floral volatiles, insect/wind pollen vectors and stigmatic self-incompatibility in a basal angiosperm. Annals of Botany, 92: 445458.CrossRefGoogle Scholar
Bierzychudek, P. 1987. Pollinators increase the cost of sex by avoiding female flowers. Ecology, 68: 444447.Google Scholar
Borkent, C.J. 2003. The association of fly pollination and the dioecious breeding system in flowering plants: an empirical examination. M.Sc. thesis, University of Calgary, Calgary, Alberta.Google Scholar
Charlesworth, D. 1993. Why are unisexual flowers associated with wind pollination and unspecialized pollinators? American Naturalist, 141: 481490.Google Scholar
Charlesworth, D., and Charlesworth, B. 1987. Inbreeding depression and its evolutionary consequences. Annual Review of Ecology and Systematics, 18: 237268.Google Scholar
de Jong, T.J. 2000. From pollen dynamics to adaptive systematics. Plant Species Biology, 15: 3141.Google Scholar
de Jong, T.J., Klinkhamer, P.G., and Rademaker, M.C.J. 1999. How geitonogamous selfing affects sex allocation in hermaphrodite plants. Journal of Evolutionary Biology, 12: 166176.Google Scholar
Delph, L.F., and Lively, C.M. 1992. Pollinator visitation, floral display, and nectar production of the sexual morphs of a gynodioecious shrub. Oikos, 63: 161170.Google Scholar
Downes, J.A., and Smith, S.M. 1969. New or little known feeding habits in Empididae (Diptera). The Canadian Entomologist, 101: 404408.Google Scholar
Eckhart, V.M. 1992. Spatio-temporal variation in abundance and variation in foraging behaviour of the pollinators of gynodioecious Phacelia linearis (Hydrophyllaceae). Oikos, 64: 573586.Google Scholar
Elberling, H., and Olesen, J.M. 1999. The structure of a high latitude plant-flower visitor system: the dominance of flies. Ecography, 22: 314323.Google Scholar
Geber, M.A., Dawson, T.E., and Delph, L.F. (Editors). 1999. Gender and sexual dimorphism in flowering plants. Springer-Verlag, Berlin.Google Scholar
Gilbert, F.S. 1985. Ecomorphological relationships in hoverflies (Diptera: Syrphidae). Proceedings of the Royal Society of London, Series B, 224: 91105.Google Scholar
Ginsberg, H.S. 1984. Foraging behaviour of the bees Halictus ligatus (Hymenoptera: Halictidae) and Ceratina calcarata (Hymenoptera: Anthophoridae): foraging speed on early-summer composite flowers. Journal of the New York Entomological Society, 92: 162168.Google Scholar
Ginsberg, H.S. 1985. Foraging movements of Halictus ligatus (Hymenoptera: Halictidae) and Ceratina calcarata (Hymenoptera: Anthophoridae) on Chrysantheum leucanthemum and Erigon annuus (Asteraceae). Journal of the Kansas Entomological Society, 58: 1926.Google Scholar
Goldblatt, P., Bernhardt, P., Vogan, P., and Manning, J.C. 2004. Pollination by fungus gnats (Diptera: Mycetophilidae) and self-recognition sites in Tolmiea menziesii (Saxifragaceae). Plant Systematics and Evolution, 244: 5567.Google Scholar
Greco, C.F., Holland, D., and Kevan, P.G. 1996. Foraging behaviour of honey bees (Apis mellifera L.) on staghorn sumac [Rhus hirta Sudworth (ex-typhina L.)]: differences and dioecy. The Canadian Entomologist, 128: 355366.Google Scholar
Gross, W.E. 2003. Dependence of hummingbird movement within inflorescences on the spatial arrangement of flowers. M.Sc. thesis, University of Calgary, Calgary, Alberta.Google Scholar
Harder, L.D., and Barrett, S.C.H. 1995. Mating costs of large floral displays in hermaphrodite plants. Nature (London), 373: 512515.Google Scholar
Hitchcock, C.L., and Cronquist, A. 1973. Flora of the Pacific Northwest. University of Washington Press, Seattle, Washington.Google Scholar
Hocking, B. 1968. Insect–flower associations in the high Arctic with special reference to nectar. Oikos, 19: 359368.CrossRefGoogle Scholar
Kato, M., Kakutani, T., Inoue, T., and Itino, T. 1990. Insect–flower relationship in the primary beech forest of Ashu Kyoto: an overview of the flowering phenology and the seasonal pattern of insect visits. Contributions from the Biological Laboratory Kyoto University, 27: 309375.Google Scholar
Kearns, C.A. 1992. Anthophilous fly distribution across an elevation gradient. American Midland Naturalist, 127: 172182.Google Scholar
Kearns, C.A., and Inouye, D.W. 1994. Fly pollination of Linum lewisii (Linaceae). American Journal of Botany, 81: 10911095.Google Scholar
Kendall, D.A., and Solomon, M.E. 1973. Quantities of pollen on the bodies of insects visiting apple blossom. Journal of Applied Ecology, 10: 627634.Google Scholar
Kevan, P.G. 1973. Flowers, insects and pollination ecology in the Canadian high Arctic. Polar Record, 16: 667674.Google Scholar
Kevan, P.G., and Baker, H.G. 1983. Insects as flower visitors and pollinators. Annual review of Entomology, 28: 407453.Google Scholar
Kevan, P.G., Eisikowitch, D., Ambrose, J.D., and Kemp, J.R. 1990. Cryptic dioecy and insect pollination in Rosa setigera Michx. (Rosaceae), a rare plant of Carolinian Canada. Biological Journal of the Linnean Society, 40: 229243.Google Scholar
Kevan, P.G., Tikhmenev, E.A., and Usui, M. 1993. Insects and plants in the pollination ecology of the boreal zone. Ecological Research, 8: 247267.Google Scholar
Kirk, R.E. 1995. Experimental design: procedures for the behavioral sciences. Brooks/Cole, Pacific Grove, California.Google Scholar
Larson, B.M.H., Kevan, P.G., and Inouye, D.W. 2001. Flies and flowers: taxonomic diversity of anthophiles and pollinators. The Canadian Entomologist, 133: 439465.Google Scholar
Lloyd, D.G. 1982. Selection of combined versus separate sexes in seed plants. American Naturalist, 120: 571585.Google Scholar
McCullagh, P., and Nelder, J.A. 1989. Generalized linear models. 2nd ed. Chapman and Hall, London.Google Scholar
Neter, J., Kutner, M.H., Nachtsheim, C.J., and Wasserman, W. 1996. Applied linear statistical models. 4th ed. Irwin, Chicago.Google Scholar
Ohashi, K. 2002. Consequences of floral complexity for bumblebee-mediated geitonogamous self-pollination in Salvia nipponica Miq. (Labiatae). Evolution, 56: 24142423.Google Scholar
Renner, S.S., and Feil, J.P. 1993. Pollinators of tropical dioecious angiosperms. American Journal of Botany, 80: 11001107.CrossRefGoogle Scholar
Renner, S.S., and Ricklefs, R.E. 1995. Dioecy and its correlates in the flowering plants. American Journal of Botany, 82: 596606.Google Scholar
Robertson, A.W. 1992. The relationship between floral display size, pollen carryover and geitonogamy in Myosotis colensoi (Kirk) Macbride (Boraginaceae). Biological Journal of the Linnean Society, 46: 333349.Google Scholar
Robertson, A.W., and Lloyd, D.G. 1993. Rates of pollen deposition and removal in Myosotis colensoi. Functional Ecology, 7: 549559.Google Scholar
Robertson, A.W., and Macnair, M.R. 1995. The effects of floral display size on pollinator service to individual flowers of Myosotis and Mimulus. Oikos, 72: 106114.Google Scholar
Sakai, A.K., and Weller, S.G. 1999. Gender and sexual dimorphism in flowering plants: a review of terminology, biogeographic patterns, ecological correlates, and phylogenetic approaches. In Gender and sexual dimorphism in flowering plants. Edited by Geber, M.A., Dawson, T.E., and Delph, L.F.. Springer-Verlag, Berlin.Google Scholar
Thomson, J.D., and Brunet, J. 1990. Hypotheses for the evolution of dioecy in seed plants. Trends in Ecology and Evolution, 5: 1116.Google Scholar
Totland, O. 1994. Intraseasonal variation in pollination intensity and seed set in an alpine population of Ranunculus acris in southwestern Norway. Ecography, 17: 159165.Google Scholar
Vance, N.C., Bernhardt, P., and Edens, R.M. 2004. Pollination and seed production in Xerophyllum tenax (Melanthiaceae) in the Cascade Range of central Oregon. American Journal of Botany, 91: 20602068.Google Scholar
Vockeroth, J.R. 1981. Mycetophilidae. In Manual of Nearctic Diptera, Vol. 1. Edited by McAlpine, J.F., Peterson, B.V., Shewell, G.E., Teskey, H.J., Vockeroth, J.R., and Wood, D.M.. Research Branch, Agriculture Canada (Monograph No. 27), Ottawa, Ontario.Google Scholar
Waldbauer, G.P. 1983. Flower associations of mimetic Syrphidae (Diptera) in northern Michigan. Great Lakes Entomologist, 16: 7985.Google Scholar
Wilson, W.G., and Harder, L.D. 2003. Reproductive uncertainty and the relative competitiveness of simultaneous hermaphroditism versus dioecy. American Naturalist, 162: 220241.Google Scholar
Zar, J.H. 1984. Biostatistical analysis. 2nd ed. Prentice Hall, New Jersey.Google Scholar