Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T04:17:40.007Z Has data issue: false hasContentIssue false

FIRST- AND SECOND-YEAR EFFECTS OF ACECAP® IMPLANTS AGAINST CONE INSECTS OF BLACK SPRUCE

Published online by Cambridge University Press:  31 May 2012

R.J. West
Affiliation:
Forestry Canada, Newfoundland and Labrador Region, PO Box 6028, St. John's, Newfoundland, Canada A1C 5X8
K.M.S. Sundaram
Affiliation:
Forestry Canada, Newfoundland and Labrador Region, PO Box 6028, St. John's, Newfoundland, Canada A1C 5X8

Abstract

Acephate implanted in trunks of black spruce, Picea mariana (Mill.) B.S.P., trees in the fall, 3 weeks before female bud flush, and at female bud flush reduced insect damage to cones and increased seed yields for 1 year. Second-year effects of the implants reduced insect damage to cones, but without increased seed yields. In the 2nd year, cones from trees treated at bud flush had the least insect damage and the highest residues of acephate and its toxic metabolite, methamidophos. Damage to treated cones by the spruce cone maggot, Strobilomyia neanthracina Michelson, the dominant insect in untreated cones, was insignificant in the 1st year and was reduced in the 2nd year.

Résumé

L’implantation d’acéphate dans les troncs d’épinette noires, Picea mariana (Mill.) B.S.P., durant l’automne, 3 semaine avant l’éclosion des bourgeons femelles et à l’éclosion des bourgeons femelles a réduit les dommages causés aux cônes par les insectes et augmenté la production de graines durant 1 an. La 2ème année, on a observé une réduction des dommages dus aux insectes, mais aucune augmentation de la production de graines. Durant la 2ème année, ce sont les cônes des arbres traité au moment de l’éclosion des bourgeons qui ont montré le moins de dommages attribuables aux insectes et le plus haut taux de résidus d’acéphate et de son metabolite toxique, le méthamidophos. Les dommages attribuables au principal ravageur des cônes, la mouche granivore de l’épinette, Strobilomyia neanthracina Michelson, ont été insignificants la 1ère année du traitement et mineurs la 2ème année.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, V.L., and McLean, R.A.. 1974. Design of Experiments. Marcel Dekker, Inc., New York, NY. 418 pp.Google Scholar
Caron, G.E., and Powell, G.R.. 1989. Cone size and seed yield in young Picea mariana trees. Canadian Journal of Forest Research 19: 351358.CrossRefGoogle Scholar
Curran, W.J., Tricco, P., and Hall, P.J.. 1987. Optimal dates for collection of conifer seed in central Newfoundland. Canadian Forestry Service Information Report N-X-248. 16 pp.Google Scholar
Dixon, W.J. (Ed.). 1988. BMDP Statistical Software Manual. University of California Press, Berkeley, CA. 616 pp.Google Scholar
Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics 11: 141.CrossRefGoogle Scholar
Fogal, W.H. 1990. White spruce cone crops in relation to seed yields, cone insect damage, and seed moth populations. pp. 76–88 in West, R.J. (Ed.), Proceedings, Cone and Seed Pest Workshop, 4 October 1989, St. John's, Newfoundland, Canada. Forestry Canada Information Report N-X-274. 128 pp.Google Scholar
Fogal, W.H., and Lopushanski, S.M.. 1989. Stem incorporation of systemic insecticides to protect white spruce seed trees. Forestry Chronicle 65: 359364.CrossRefGoogle Scholar
Fogal, W.H., and Plowman, V.C.. 1989. Systemic insecticides for protecting northern spruce and pine seed trees. Forestry Canada Information Report PI-X-92. 17 pp.Google Scholar
Hedlin, A.F., Yates, H.O. III, Tovar, D.C., Ebel, B.H., Koerber, T.W., and Merkel, E.P.. 1981. Cone and Seed Insects of North American Conifers. Environment Canada, Canadian Forestry Service/United States Department of Agriculture Forest Service/Secretaria de Agricultura y Recursos Hidraulicos, Mexico. Victoria, B.C. 122 pp.Google Scholar
Hurly, T.A., Yeatman, C.W., and Robertson, R.J.. 1987. Maturity and viability of seed from squirrel-cut pine cones. Forestry Chronicle 63: 268271.CrossRefGoogle Scholar
International Seed Testing Association. 1985. International rules for seed testing annexes 1985. Seed Sciences and Technology 13: 356513.Google Scholar
Lindquist, O.H. 1982. Keys to lepidopterous larvae associated with the spruce budworm in northeastern North America. Environment Canada, Canadian Forestry Service, Sault Ste. Marie, Ont. 18 pp.Google Scholar
Matyas, C., and Rauter, R.M.. 1987. Feasibility of seed orchard establishment, rogueing and lifespan. Forest Ecology and Management 19: 247256.CrossRefGoogle Scholar
Mize, C.W., and Schultz, R.C.. 1985. Comparing treatment means correctly and appropriately. Canadian Journal of Forestry Research 15: 11421148.CrossRefGoogle Scholar
Owens, J.N., and Blake, M.D.. 1985. Forest tree seed production. Forestry Canada Information Report PI-X-53. 161 pp.Google Scholar
Prévost, Y.H., Laing, J.E., and Haavisto, V.F.. 1988. Seasonal damage by insects and squirrels to female reproductive structures of black spruce, Picea mariana (Mill.) B.S.P. Canadian Entomologist 120: 11131121.CrossRefGoogle Scholar
Reardon, R.C. 1984 a. Two consecutive yearly applications of orthene medicaps increase protection of grand fir against western spruce budworm. Forest Ecology and Management 7: 183190.CrossRefGoogle Scholar
Reardon, R.C. 1984 b. How to protect individual trees from western spruce budworm by implants and injections. United States Department of Agriculture Forest Service Agriculture Handbook No. 625.Google Scholar
Reardon, R.C., Barrett, L.J., and Koerber, T.W.. 1985. Implantation and injection of systemics to suppress seed and cone insects in Douglas fir in Montana. Canadian Entomologist 117: 961969.CrossRefGoogle Scholar
Reardon, R.C., and Haskett, M.J.. 1981. Effect of Orthene Medicaps on populations of western spruce budworm on grand fir and Douglas fir. Journal of Economic Entomology 74: 266270.CrossRefGoogle Scholar
Rose, A.H., and Lindquist, O.H.. 1977. Insects of eastern spruces, fir and hemlock. Environment Canada, Canadian Forestry Service Technical Report 23. Ottawa, Ont. 159 pp.Google Scholar
SAS Institute Inc. 1989. SAS/STAT User's Guide, Version 6, 4th ed, Volume 1. SAS Institute Inc., Cary, NC. 943 pp.Google Scholar
Shapiro, S.S., and Wilk, M.B.. 1965. An analysis of variance test for normality (complete samples). Biometrika 52: 591611.CrossRefGoogle Scholar
Sokal, R.R., and Rohlf, F.J.. 1981. Biometry. W.H. Freeman and Co., San Francisco, CA. 859 pp.Google Scholar
Stein, J.D., Koerber, T., and Frank, C.L.. 1988. Trunk-implanted acephate to protect Douglas-fir seed crops on individual trees in northern California. Journal of Economic Entomology 81: 16681671.CrossRefGoogle Scholar
Stevens, R.E., and Leatherman, D.A.. 1982. Implants and sprays for control of ponderosa pine needle miner in foliage of individual tree. United States Department of Agriculture Forest Service Research Note RM-420. 4 pp.Google Scholar
Tripp, H.A. 1954. The instars of a maggot (Pegohylemia) inhabiting white spruce cones. Canadian Entomologist 86: 185189.CrossRefGoogle Scholar
West, R.J. 1986. Seasonal incidence of cone pests of black spruce in Newfoundland. Forestry Canada Information Report N-X-244. 16 pp.Google Scholar
Zar, J.H. 1984. Biostatistical Analysis. Prentice-Hall, Inc., Englewood Cliffs, NJ. 718 pp.Google Scholar