Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T05:26:46.295Z Has data issue: false hasContentIssue false

Field response of onion thrips and New Zealand flower thrips to single and binary blends of thrips lures

Published online by Cambridge University Press:  02 April 2012

Michael J. Wogin*
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6, and New Zealand Institute for Plant and Food Research Ltd., Private Bag 4704, Christchurch, New Zealand
Ruth C. Butler
Affiliation:
New Zealand Institute for Plant and Food Research Ltd., Private Bag 4704, Christchurch, New Zealand
David A.J. Teulon
Affiliation:
New Zealand Institute for Plant and Food Research Ltd., Private Bag 4704, Christchurch, New Zealand
Melanie M. Davidson
Affiliation:
New Zealand Institute for Plant and Food Research Ltd., Private Bag 4704, Christchurch, New Zealand
*
1Corresponding author (e-mail: [email protected]).

Abstract

Tests were performed to determine whether combining two thrips lures, ethyl nicotinate (EN) and ethyl isonicotinate (EI), in the same water trap increased the numbers of New Zealand flower thrips (NZFT), Thrips obscuratus Crawford, and onion thrips, T. tabaci Lindeman (Thysanoptera: Terebrantia: Thripidae), caught in the field relative to traps with a single lure. Traps with both lures (1:1 ratio; mixture or separate adjacent vials) caught 5–9 times more female onion thrips (thelyotokous populations are the most prevalent in New Zealand) than traps with EN only (P<0.001), but in similar numbers to traps with EI only. Traps with both lures caught 2–3 times as many male and female NZFT than traps with EI only, but in similar numbers to traps with EN only. Thus, a combination of the two lures in one trap could be used to detect and monitor flying onion thrips and NZFT simultaneously.

Résumé

Nous avons testé si le fait de combiner deux leurres connus à thrips, l'éthyl nicotinate (EN) et l'éthyl isonicotinate (EI), dans le même piège à eau, augmentait la quantité de Thrips obscuratus Crawford (New Zealand flower thrips, NZFT) et de T. tabaci Lindeman (thrips à oignon) (Thysanoptera: Terebrantia : Thripidae) attrapés au champ en comparaison avec des pièges à leurre unique. Les pièges avec les deux leurres (1:1 ratio) ont attrapé 5–9 fois plus de thrips à oignon femelles que les pièges avec EN uniquement (P<0.001), mais en quantités similaires aux pièges avec EI uniquement. Les pièges avec les deux leurres ont attrapé 2–3 fois plus de mâles et de femelles NZFT que les pièges avec EI uniquement, mais des quantités similaires aux pièges avec EN uniquement. Ainsi, la combinaison des leurres dans un même piège pourrait être utilisée pour détecter et faire un suivi à la fois des thrips aériens à oignon et de ceux à NZFT.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

El-Sayed, A.M., Byers, J.A., Manning, L.M., Jurgens, A., Mitchell, V.J., and Suckling, D.M. 2008. Floral scent of Canada thistle and its potential as a generic insect attractant. Journal of Economic Entomology, 101(3): 720727. PMID:18613571 doi:10.1603/0022-0493(2008)101 [720:FSOCTA]2.0.CO;2.CrossRefGoogle ScholarPubMed
GenStat Committee. 2006. The guide to GenStat release 9. Parts 1–3. VSN International, Oxford.Google Scholar
McCullagh, P., and Nelder, J.A. 1989. Generalized linear models. Chapman & Hall, London.CrossRefGoogle Scholar
Morse, J.G., and Hoddle, M.S. 2006. Invasion biology of thrips. Annual Review of Entomology, 51: 6789. PMID:16332204 doi:10.1146/annurev.ento.51.110104.151044.CrossRefGoogle ScholarPubMed
Mound, L.A., and Walker, A.K. 1982. Terebrantia (Insecta: Thysanoptera). DSIR, Wellington.Google Scholar
Penman, D.R., Osborne, G.O., Worner, S.P., Chapman, R.B., and McLaren, G.F. 1982. Ethyl nicotinate: a chemical attractant for Thrips obscuratus (Thysanoptera: Thripidae) in stonefruit in New Zealand. Journal of Chemical Ecology, 8(10): 12991303. doi:10.1007/BF00987763.CrossRefGoogle ScholarPubMed
Piñero, J.C., and Dorn, S. 2007. Synergism between aromatic compounds and green leaf volatiles derived from the host plant underlies female attraction in the oriental fruit moth. Entomologia Experimentalis et Applicata, 125: 185194. doi:10.1111/j.1570-7458.2007.00614.x.CrossRefGoogle Scholar
Tasin, M., Backman, A.C., Bengtsson, M., Varela, N., Ioriatti, C., and Witzgall, P. 2006. Wind tunnel attraction of grapevine moth females, Lobesia botrana, to natural and artificial grape odour. Chemoecology, 16(2): 8792. doi:10.1007/s00049-005-0332-6.CrossRefGoogle Scholar
Teulon, D.A.J., and Penman, D.R. 1996. Thrips (Thysanoptera) seasonal flight activity and infestation of ripe stonefruit in Canterbury, New Zealand. Journal of Economic Entomology, 89(3): 722734.CrossRefGoogle Scholar
Teulon, D.A.J., Davidson, M.M., Hedderley, D.I., James, D.E., Fletcher, C.D., Larsen, L., Green, V.C., and Perry, N.B. 2007. 4-Pyridyl carbonyl and related compounds as thrips lures: effectiveness for onion thrips and New Zealand flower thrips in field experiments. Journal of Agricultural and Food Chemistry, 55(15): 61986205. PMID: 17602496 doi: 10.1021/jf070389zxx cvbmZX zxx cvbmZX a.CrossRefGoogle ScholarPubMed