Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T01:44:45.872Z Has data issue: false hasContentIssue false

FIELD AND LABORATORY EVALUATION OF TWO CONIDIAL BATCHES OF BEAUVERIA BASSIANA (BALSAMO) VUILLEMIN AGAINST GRASSHOPPERS

Published online by Cambridge University Press:  31 May 2012

G.D. Inglis
Affiliation:
Agriculture and Agri-Food Canada, Research Centre, PO Box 3000, Lethbridge, Alberta, Canada T1J 4B1and Centre for Pest Management, Simon Fraser University, Bumaby, British Columbia, Canada V5A 1S6
D.L. Johnson
Affiliation:
Agriculture and Agri-Food Canada, Research Centre, PO Box 3000, Lethbridge, Alberta, Canada T1J 4BI
M.S. Goettel
Affiliation:
Agriculture and Agri-Food Canada, Research Centre, PO Box 3000, Lethbridge, Alberta, Canada T1J 4B1

Abstract

The efficacy of two production batches of conidia of Beauveria bassiana (Balsamo) Vuillemin that showed differential field efficacy in 1992 (GHA 92) and 1994 (GHA 94) were compared against grasshoppers in the laboratory and field. Conidia of GHA 92 and GHA 94 exhibited good germination (> 92%) by 24 h, but the rate of germination was slower for GHA 94 than for GHA 92. Although both conidial batches were highly virulent (LD50 < 6 × 103 conidia per nymph) against nymphs of Melanoplus sanguinipes (Fabricius) (Orthoptera: Acrididae) in the laboratory, GHA 92 was slightly more virulent than GHA 94. Conidia were applied to field populations of grasshoppers in a 1.5% emulsifiable oil-emulsion amended with 4% clay at a volume of 112 L/ha. There were no differences between GHA 92 and GHA 94 in the deposition of spray droplets on water-sensitive papers or of conidia on leaves and coverslips (2.4 × 10 to 4.1 × 10 cfu/cm2). All grasshopper nymphs collected from plots sprayed with conidia of GHA 92 and GHA 94 were equally infested with B. bassiana; conidial populations averaged 3.5 × 103 to 4.3 × 103 cfu/nymph. Conditions were hot, dry, and sunny, and regardless of the batch, persistence of conidia was equally short on both leaves and grasshoppers. Neither treatment of B. bassiana significantly reduced field populations nor did either impact differentially on specific grasshopper taxa. However, among grasshoppers collected immediately after conidial application and maintained in cages in the greenhouse, over 80% died of infection with B. bassiana. For both conidial treatments, the prevalence of disease in caged grasshoppers decreased with the sampling date but the onset of mycosis always occurred 3–4 days after collection. This study indicates that environmental conditions in the field and not pathogen virulence or targeting were responsible for the poor efficacy of B. bassiana against grasshoppers.

Résumé

Les effets de deux lots de conidies de Beauveria bassiana (Balsamo) Vuillemin qui ont eu une efficacité différente sur le terrain en 1992 (GHA 1992) et en 1994 (GHA 94) ont été comparés en laboratoire et sur le terrain dans la lutte contre les sauterelles. Les conidies de GHA 92 et de GHA 94 avaient des taux de germination élevés (> 92%) après 24 h, mais la germination était plus lente dans le cas de GHA 94 que dans le cas de GHA 92. Bien que les deux lots de conidies se soient avérés très virulents (LD50 < 6 × 103 par larvae) pour les larves de Melanoplus sanguinipes (Fabricius) (Orthoptera : Acrididae) en laboratoire, le GHA 92 était légèrement plus virulent que le GHA 94. Une émulsion à l’huile émulsifiable 1,5% de conidies additionnée de 4% d’argile a été vaporisée sur le terrain à raison de 112 L/ha. Il n’y avait pas de différences entre les lots GHA 92 et GHA 94 quant à la répartition des gouttelettes d’émulsion sur des papiers sensibles à l’eau ou des conidies sur des feuilles ou des lamelles (2,4 × 104 à 4,1 × 104 cfu/cm2). Toutes les larves de sauterelles recueillies dans les champs vaporisés de conidies de GHA 92 et GHA 94 étaient également infestées de B. bassiana; les populations de conidies contenaient en moyenne de 3,5 × 103 à 4,3 × 103 cfu/larve. Les conditions étaient chaudes, sèches et ensoleillées et la persistance des conidies des deux lots était de courte durée sur les feuilles et sur les sauterelles. Ni l’un ni l’autre des traitements n’a entraîné de réduction significative des populations de sauterelles et leurs effets sur des taxons spécifiques de sauterelles ont été sensiblement les mêmes. Cependant, parmi les sauterelles recueillis immédiatement après l’application du traitement et gardés en serre dans des cages, plus de 80% sont morts à la suite de l’infection par le champignon. Dans le cas des deux traitements, la fréquence des infections chez les sauterelles en cage diminuait en fonction de la date de l’échantillonnage, mais le déclenchement de la mycose avait toujours lieu de 3 à 4 jours après l’échantillonnage. Les résultats de l’étude indiquent que ce sont les conditions climatiques sur le terrain et non la virulence du pathogène ou l’hôte visé qui sont responsables de l’inefficacité des traitements à base de B. bassiana dans la lutte contre les sauterelles.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265267.CrossRefGoogle Scholar
Bateman, R.P., Carey, M., Moore, D., and Prior, C.. 1993. The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Annals of Applied Biology 122: 145152.CrossRefGoogle Scholar
Boucias, D.G., Pendland, J.C., and Latge, J.P.. 1988. Nonspecific factors involved in attachment of entomopathogenic Deuteromycetes to host insect cuticle. Applied and Environmental Microbiology 54: 17951805.CrossRefGoogle ScholarPubMed
Bradley, C.A., Black, W.E., Kearns, R., and Wood, P.. 1992. Role of production technology in mycoinsecticide development. pp. 160–173 in Leatham, G.F. (Ed.), Frontiers in Industrial Mycology. Chapman and Hall, New York, NY. 222 pp.Google Scholar
Brooks, A.R. 1958. Acridoidea of southern Alberta, Saskatchewan, and Manitoba (Orthoptera). The Canadian Entomologist Supplement. 92 pp.Google Scholar
Carruthers, R.I., Larkin, T.S., and Firstencel, H.. 1992. Influence of thermal ecology on the mycosis of a rangeland grasshopper. Ecology 73: 190204.CrossRefGoogle Scholar
Chappell, M.A., and Whitman, D.W.. 1990. Grasshopper thermoregulation. pp. 143–172 in Chapman, R. (Ed.), Biology of Grasshoppers. Wiley Interscience, New York, NY. 949 pp.Google Scholar
Donegan, K., and Lighthart, B.. 1989. Effect of several stress factors on the susceptibility of the predatory insect, Chrysoperla carnea (Neuroptera: Chrysopidae), to the fungal pathogen Beauveria bassiana. Journal of Invertebrate Pathology 54: 7984.CrossRefGoogle Scholar
Fargues, J., Delmas, J.C., Auge, J., and Lebrun, R.A.. 1991. Fecundity and egg fertility in the adult Colorado beetle (Leptinotarsa decemlineata) surviving larval infection by the fungus Beauveria bassiana. Entomologia Experimentalis et Applicata 61: 4551.CrossRefGoogle Scholar
Feng, M.G., Poprawski, T.J., and Khachatourians, G.G.. 1994. Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: Current status. Biocontrol Science and Technology 4: 334.CrossRefGoogle Scholar
Ferron, P. 1971. Modification of the development of Beauveria tenella mycosis in Melolontha melolontha larvae, by means of reduced doses of organophosphorus insecticides. Entomologia Experimentalis et Applicata 14: 457466.CrossRefGoogle Scholar
Ferron, P. 1981. Pest control by the fungi Beauveria and Metarhizium. pp. 465–482 in Burges, H.D. (Ed.), Microbial Control of Pests and Plant Diseases, 1970–1980. Academic Press, New York, NY. 949 pp.Google Scholar
Goettel, M.S., Johnson, D.L., and Inglis, G.D.. 1995. The role of fungi in the control of grasshoppers. Canadian Journal of Botany 73 (Supplement 1): S71–S75.CrossRefGoogle Scholar
Gomez, K.A., and Gomez, A.A.. 1984. Statistical Procedures for Agricultural Research. John Wiley and Sons, New York, NY. 680 pp.Google Scholar
Hardman, J.M., and Mukerji, M.K.. 1982. A model simulating the population dynamics of the grasshoppers (Acrididae) Melanoplus sanguinipes (Fabr.), M. packardii Scudder and Camnula pellucida (Scudder). Research in Population Ecology 24: 276301.CrossRefGoogle Scholar
Inglis, G.D., Goettel, M.S., and Johnson, D.L.. 1993. Persistence of the entomopathogenic fungus, Beauveria bassiana, on phylloplanes of crested wheatgrass and alfalfa. Biological Control 3: 258270.CrossRefGoogle Scholar
Inglis, G.D., Goettel, M.S., and Johnson, D.L.. 1995. Influence of ultraviolet light protectants on persistence of the entomopathogenic fungus, Beauveria bassiana. Biological Control 5: 581590.CrossRefGoogle Scholar
Inglis, G.D., Johnson, D.L., and Goettel, M.S.. 1996 a. Effect of bait substrate and formulation on infection of grasshopper nymphs by Beauveria bassiana. Biocontrol Science and Technology 6: 3550.CrossRefGoogle Scholar
Inglis, G.D., Johnson, D.L., and Goettel, M.S.. 1996 b. An oil-bait bioassay method used to test the efficacy of Beauveria bassiana against grasshoppers. Journal of Invertebrate Pathology 67: 312315.CrossRefGoogle ScholarPubMed
Johnson, D.L. 1989. The effects of timing and frequency of application of Nosema locustae (Microspora: Microsporida) on the infection rate and activity of grasshoppers (Orthoptera: Acrididae). Journal of Invertebrate Pathology 54: 353362.CrossRefGoogle Scholar
Johnson, D.L., and Goettel, M.S.. 1993. Reduction of grasshopper populations following field application of the fungus Beauveria bassiana. Biocontrol Science and Technology 3: 165175.CrossRefGoogle Scholar
Johnson, D.L., Goettel, M.S., Bradley, C., van der Paauw, H., and Maiga, B.. 1992. Field trials with the entomopathogenic fungus Beauveria bassiana against grasshoppers in Mali, West Africa, July, 1990. pp. 296–310 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, UK. 394 pp.Google Scholar
Johnson, D.L., Hill, B.D., Hinks, C.F., and Schaalje, G.B.. 1986. Aerial application of the pyrethroid deltamethrin for grasshopper (Orthoptera: Acrididae) control. Journal of Economic Entomology 79: 181188.CrossRefGoogle Scholar
Kemp, W. 1986. Thermoregnlation in three rangeland grasshopper species. The Canadian Entomologist 118: 335343.CrossRefGoogle Scholar
Lobo-Lima, M.L., Brito, J.M., and Henry, J.E.. 1992. Biological control of grasshoppers in the Cape Verde Islands. pp. 287–295 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, UK. 394 pp.Google Scholar
Marcandier, S., and Khachatourians, G.G.. 1987. Susceptibility of the migratory grasshopper, Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae), to Beanveria bassiana (Bals.) Vuillemin (Hyphomycete): Influence of relative humidity. The Canadian Entomologist 119: 901907.CrossRefGoogle Scholar
Mason, P.G., and Erlandson, M.A.. 1994. The potential of biological control for management of grasshoppers (Orthoptera: Acrididae) in Canada. The Canadian Entomologist 126: 14591491.CrossRefGoogle Scholar
Milliken, G.A., and Johnson, D.E.. 1984. Analysis of Messy Data. Designed Experiments, Vol. 1. Van Nostrand Reinhold Company, New York, NY. 473 pp.Google Scholar
Otte, D. 1981. The North American Grasshoppers. Vol. 1. Acrididae: Gomphocerinae and Acridinae. Harvard University Press, Cambridge, MA. 275 pp.Google Scholar
Otte, D. 1984. The North American Grasshoppers. Vol. 2. Acrididae: Oedipodinae. Harvard University Press, Cambridge, MA. 366 pp.Google Scholar
Ouedraogo, R.M. 1993 Investigations on the Use of the Fungus, Beauveria bassiana (Hyphomycetes: Moniliales) for Control of the Senegalese Grasshopper, Oedaleus senegalensis (Orthoptera: Acrididae). M.P.M. thesis, Simon Fraser University, Burnaby, BC, Canada. 67 pp.Google Scholar
Pfadt, R.E. 1988. Field Guide to Common Western Grasshoppers. University of Wyoming, Laramie, WY.Google Scholar
SAS Institute Inc. 1988. SAS/Stat User's Guide, Release 6.03 ed. SAS Institute Inc., Cary, NC. 1028 pp.Google Scholar
Schaalje, G.B., Charnetski, W.A., and Johnson, D.L.. 1986. A comparison of estimators of the degree of insect control. Communications in Statistics: Simulations and Computations 15: 10651086.CrossRefGoogle Scholar
Steel, R.D. G., and Torrie, J.H.. 1980. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed. McGraw-Hill, New York, NY. 633 pp.Google Scholar
Steinhaus, E.A. 1958. Crowding as a possible stress factor in insect disease. Ecology 39: 503514.CrossRefGoogle Scholar
Vickery, V.R., and Kevan, D.K.McE.. 1985. The Grasshoppers, Crickets, and Related Insects of Canada and Adjacent Regions. The Insects and Arachnids of Canada. Part 14. Agriculture Canada Publication 1777: 918 pp. Ottawa, ON.Google Scholar
Watson, D.W., Mullens, B.A., and Petersen, J.J.. 1993. Behavioral fever response of Musca domestica (Diptera: Muscidae) to infection by Entomophthora muscae (Zygomycetes: Entomophthorales). Journal of Invertebrate Pathology 61: 1016.CrossRefGoogle Scholar