Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-28T16:15:51.406Z Has data issue: false hasContentIssue false

FACTORS INFLUENCING THE EFFICIENCY OF PHEROMONE-BAITED TRAPS FOR THREE SPECIES OF AMBROSIA BEETLES (COLEOPTERA: SCOLYTIDAE)

Published online by Cambridge University Press:  31 May 2012

B. S. Lindgren
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6
J. H. Borden
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6
L. Chong
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6
L. M. Friskie
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6
D. B. Orr
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6

Abstract

The optimal release rate of the aggregation pheromone, lineatin, for trapping Trypodendron lineatum (Olivier) was 40 μg/24h. Sticky vane traps were more efficient than three other trap types for T. lineatum and Gnathotrichus retusus (LeConte). For G. sulcatus (LeConte), a multiple funnel trap was more efficient than a sticky cylinder trap but no better than vane traps or Scandinavian drainpipe traps. Placement of bait in the middle or bottom of drainpipe traps increased their efficiency in capturing T. lineatum and G. sulcatus. Multiple funnel traps and drainpipe traps releasing lineatin at 10 μg/24h, with an additional dispenser releasing lineatin at 30 μg/24h 1.5–2 m away from the trap caught more T. lineatum than traps releasing lineatin at 10 μg/24h, and were as efficient as traps releasing the pheromone at 40 μg/24h. Thus, the beetles respond strongly to the trap silhouette once attracted to its vicinity. In late April traps placed 15–25 m inside the forest margin caught more T. lineatum than traps at the margin, probably intercepting overwintering beetles before they left the forest. A few strategically placed vane traps among numerous multiple funnel or drainpipe traps are recommended for mass trapping of ambrosia beetles in timber processing areas.

Résumé

La vitesse optimale de libération de la phéromone d'aggrégation linéatine, pour la capture du Trypodendron lineatum (Olivier), s'est avérée être de 40 μg/24h. Des pièges à ailettes engluées ont été plus efficaces que 3 autres types de pièges pour le T. lineatum et le Gnathotrichus retusus (LeConte). Pour le G. sulcatus (LeConte), un piège à entonnoirs multiples s'est montré plus efficace qu'un piège de type cylindre englué, bien que non supérieur aux pièges à ailettes ou aux pièges à tuyaux de drainage scandinaves. L'inclusion d'un appât au milieu ou au fond des pièges à tuyaux a augmenté leur efficacité de capture pour le T. lineatum et le G. sulcatus. Des pièges à entonnoirs multiples et des pièges à tuyaux libérant la linéatine à 10 μg/24h, et munis d'une source additionnelle libérant la linéatine à 30 μg/24h, située à 1.5–2 m du piège, ont capturé plus de T. lineatum que les pièges libérant la linéatine à 10 μg/24h, et se sont montrés aussi efficaces que les pièges libérant la phéromone à 40 μg/24h. Ainsi les scolytes répondent fortement à la silhouette du piège une fois attirés dans son voisinage. Tard en avril, des pièges placés 15–25 m à l'intérieur de la bordure du bois ont capturé plus de T. lineatum que ceux situés en bordure, probablement en interceptant des insectes hivernants avant leur sortie de la forêt. Il est recommandé d'utiliser quelques pièges à ailettes placés de façon stratégique parmi plusieurs pièges à entonnoirs multiples et à tuyaux, pour le piégeage en masse des scolytes du bois dans les régions entourant les sites de conversion du bois.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakke, A. and Sæther, T.. 1978. Granbarkbillen kan fanges i rørfeller. Skogeieren 65(11): 10.Google Scholar
Bedard, W. D. and Wood, D. L.. 1981. Suppression of Dendroctonus brevicomis by using a mass-trapping tactic. pp. 103–114 in Mitchell, E. R. (Ed.), Management of Insect Pests with Semiochemicals. Plenum Press, N.Y. and London. 514 pp.Google Scholar
Bennett, L. J. 1978. The spectral response of scolytids (Coleoptera: Scolytidae) to visible light: A morphological, behavioral, and electrophysical study. Ph.D. Thesis, Simon Fraser University, B.C., Canada. 111 pp.Google Scholar
Bennett, R. B. and Borden, J. H.. 1971. Flight arrestment of tethered Dendroctonus pseudotsugae and Trypodendron lineatum (Coleoptera: Scolytidae) in response to olfactory stimuli. Ann. ent. Soc. Am. 64: 12731286.CrossRefGoogle Scholar
Birch, M. C. 1979. Use of pheromone traps to suppress populations of Scolytus multistriatus in small, isolated Californian communities. Bull. ent. Soc. Am. 25: 112115.Google Scholar
Borden, J. H. 1977. Behavioral responses of Coleoptera to pheromones, allomones, and kairomones. pp. 169–198 in Shorey, H. H. and McKelvey, J. J. Jr., (Eds.), Chemical Control of Insect Behavior: Theory and Application. Wiley, N.Y.414 pp.Google Scholar
Borden, J. H., Handley, J. R., Johnston, B. D., MacConnell, J. G., Silverstein, R. M., Slessor, K. N., Swigar, A. A., and Wong, D. T. W.. 1979. Synthesis and field testing of 4,6,6,-lineatin, the aggregation pheromone of Trypodendron lineatum (Coleoptera: Scolytidae). J. chem. Ecol. 5: 681689.CrossRefGoogle Scholar
Borden, J. H., Handley, J. R., McLean, J. A., Silverstein, R. M., Chong, L., Slessor, K. N., Johnston, B. D., and Schuler, H. R.. 1980 a. Enantiomer-based specificity in pheromone communication by two sympatric Gnathotrichus species (Coleoptera: Scolytidae). J. chem. Ecol. 6: 445456.CrossRefGoogle Scholar
Borden, J. H., Lindgren, B. S., and Chong, L.. 1980 b. Ethanol and α-pinene as synergists for the aggregation pheromones of two Gnathotrichus species. Can. J. For. Res. 10: 290292.CrossRefGoogle Scholar
Borden, J. H., Chong, L., Slessor, K. N., Oehlschlager, A. C., Pierce, H. D. Jr., and Lindgren, B. S.. 1981. Allelochemic activity of aggregation pheromones between three sympatric species of ambrosia beetles (Coleoptera: Scolytidae). Can. Ent. 113: 557563.CrossRefGoogle Scholar
Borden, J. H. and McLean, J. A.. 1981. Pheromone-based suppression of ambrosia beetles in industrial timber processing areas. pp. 133–154 in Mitchell, E. R. (Ed.), Management of Insect Pests with Semiochemicals. Plenum Press, N.Y. and London. 514 pp.Google Scholar
Borden, J. H., King, C. J., Lindgren, S., Chong, L., Gray, D. R., Oehlschlager, A. C., Slessor, K. N., and Pierce, H. D. Jr., 1982. Variation in the response of Trypodendron lineatum from two continents to semiochemicals and trap form. Environ. Ent. 11: 403408.CrossRefGoogle Scholar
Browne, L. E. 1978. A trapping system for the western pine beetle using attractive pheromones. J. chem. Ecol. 4: 261275.CrossRefGoogle Scholar
Byrne, K. J., Swigar, A. A., Silverstein, R. M., Borden, J. H., and Stokkink, E.. 1974. Sulcatol: Population aggregation pheromone in the scolytid beetle, Gnathotrichus sulcatus. J. Insect Physiol. 20: 18951900.CrossRefGoogle ScholarPubMed
Cade, S. C. 1970. The host selection behavior of Gnathotrichus sulcatus LeConte (Coleoptera: Scolytidae). Ph.D. Thesis, Univ. Washington, Seattle. 112 pp.Google Scholar
Chapman, J. A. and Kinghorn, J. M.. 1955. Window flight traps for insects. Can. Ent. 87: 4647.CrossRefGoogle Scholar
Choudhury, J. H. and Kennedy, J. S.. 1980. Light versus pheromone-bearing wind in the control of flight direction by bark beetles, Scolytus multistriatus. Physiol. Ent. 5: 207214.CrossRefGoogle Scholar
Cross, W. H., Mitchell, H. C., and Hardee, D. D.. 1976. Boll weevils: Response to light sources and colors on traps. Environ. Ent. 5: 565571.CrossRefGoogle Scholar
Dobie, J. 1978. Ambrosia beetles have expensive tastes. Can. For. Serv., Pacif. For. Res. Cent. Rep. BC-P-24. 5 pp.Google Scholar
Dyer, E. D. A. and Chapman, J. A.. 1965. Flight and attack of the ambrosia beetle Trypodendron lineatum (Oliv.) in relation to felling date of logs. Can. Ent. 97: 4257.CrossRefGoogle Scholar
Entwistle, P. F. 1963. Some evidence for a colour sensitive phase in the flight period of Scolytidae and Platypodidae. Entomologia exp. appl. 6: 143148.CrossRefGoogle Scholar
Furniss, M. M. 1981. An improved nonsticky trap for field testing scolytid pheromones. Environ. Ent. 10: 161163.CrossRefGoogle Scholar
Graham, K. 1959. Release by flight exercise of the chemotropic response from photopositive domination in a scolytid beetle. Nature 184: 283284.CrossRefGoogle Scholar
Groberman, L. J. and Borden, J. H.. 1981. Behavioral response of Dendroctonus pseudotsugae and Trypodendron lineatum (Coleoptera: Scolytidae) to selected wavelength regions of the visible spectrum. Can. J. Zool. 59: 21592165.CrossRefGoogle Scholar
Kinghorn, J. M. and Chapman, J. A.. 1959. The overwintering of the ambrosia beetle Trypodendron lineatum (Oliv.). For. Sci. 5: 8192.Google Scholar
Klimetzek, D. and Vité, J. P.. 1978. Einfluss des saisonbedingten Verhaltens beim Buchdrücker auf die Wirksamkeit von Flug- und Landefallen. Allgemeine Forstzeitschr. 33: 14461447.Google Scholar
Lie, R. and Bakke, A.. 1981. Practical results from the mass trapping of Ips typographus in Scandinavia. pp. 175–181 in Mitchell, E. R. (Ed.), Management of Insect Pests with Semiochemicals. Plenum Press, N.Y. and London. 514 pp.Google Scholar
Lindgren, B. S. 1983. A multiple funnel trap for scolytid beetles (Coleoptera). Can. Ent. 115: 299302.CrossRefGoogle Scholar
Lindgren, B. S., Borden, J. H., Gray, D. R., Lee, P. C., Palmer, D. A., and Chong, L.. 1982. Evaluation of two trap log techniques for ambrosia beetles in timber processing areas. J. econ. Ent. 75: 577586.CrossRefGoogle Scholar
Mathers, W. G. 1935. Time of felling in relation to injury from ambrosia beetles, or pinworms. B.C. Lumberman 19(8): 14.Google Scholar
McBride, C. F. and Kinghorn, J. M.. 1960. Lumber degrade caused by ambrosia beetles. B.C. Lumberman 44: 4052.Google Scholar
McLean, J. A. 1976. Primary and secondary attraction in Gnathotrichus sulcatus (LeConte) (Coleoptera: Scolytidae) and their application in pest management. Ph.D. Thesis, Simon Fraser Univ., Burnaby, B.C.108 pp.Google Scholar
McLean, J. A. and Borden, J. H.. 1979. An operational pheromone-based suppression program for an ambrosia beetle, Gnathotrichus sulcatus, in a commercial sawmill. J. econ. Ent. 72: 165172.CrossRefGoogle Scholar
Moser, J. C. and Browne, L. E.. 1978. A nondestructive trap for Dendroctonus frontalis Zimmerman (Coleoptera: Scolytidae). J. chem. Ecol. 4: 17.CrossRefGoogle Scholar
Nijholt, W. W. 1978. Ambrosia beetle: A menace to the forest industry. Can. For. Serv., Pacif. For. Res. Centre Rep. BC-P-22. 8 pp.Google Scholar
Peacock, J. W., Cuthbert, R. A., and Lanier, G. N.. 1981. Deployment of traps in a barrier strategy to reduce populations of the European elm bark beetle, and the incidence of Dutch elm disease. pp. 155–174 in Mitchell, E. R. (Ed.), Management of Insect Pests with Semiochemicals. Plenum Press, N.Y. and London. 5141 pp.Google Scholar
Schönherr, J. 1971. Beobachtungen über die Empfindlichkeit von Borkenkäfem gegenüber kurzwelligem Licht. Z. angew. Ent. 68: 244250.CrossRefGoogle Scholar
Tilden, P. E. 1976. Behavior of Dendroctonus brevicomis near sources of synthetic pheromones in the field. M.Sc. Thesis, Univ. California, Berkeley. 66 pp.Google Scholar
Tilden, P. E., Bedard, W. D., Wood, D. L., Lindahl, K. Q., and Rauch, P. A.. 1979. Trapping the western pine beetle at and near a source of synthetic attractive pheromone. Effects of trap size and position. J. chem. Ecol. 5: 519531.CrossRefGoogle Scholar