Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T10:32:19.514Z Has data issue: false hasContentIssue false

EVALUATION OF A NATURAL RUBBER SLEEVE STOPPER AS A CONTROLLED-RELEASE SUBSTRATE FOR USE IN STUDIES OF SEX-PHEROMONE-MEDIATED MATING DISRUPTION OF THE SPOTTED TENTIFORM LEAFMINER

Published online by Cambridge University Press:  31 May 2012

R.M. Trimble
Affiliation:
Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, P.O. Box 6000, Vineland Station, Ontario, Canada LOR 2E0
C.A. Tyndall
Affiliation:
Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, P.O. Box 6000, Vineland Station, Ontario, Canada LOR 2E0
B.D. McGarvey
Affiliation:
Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, P.O. Box 6000, Vineland Station, Ontario, Canada LOR 2E0

Abstract

Natural rubber sleeve stoppers were impregnated with 10 mg of (E)-10-dodecen-1-yl-acetate, the major component of spotted tentiform leafminer, Phyllonorycter blancardella (F.), pheromone. In the laboratory, there was a linear decline in the amount of pheromone remaining on stoppers during 8 weeks of exposure to 10, 15, 20, and 25 °C. At 30 and 35 °C, the relationship was curvilinear and could be described using a second-order polynomial equation. The estimated rate of evaporation ranged from 0.03 mg/day at 10 °C to 0.08 mg/day at 25 °C; the rate of evaporation at 30 and 35 °C varied with the time since first exposure. There was a linear decline in the amount of pheromone remaining on stoppers during 8 weeks of exposure to fluctuating temperature regimes with average temperatures of 10 °C (i.e., 5–15 °C) and 20 °C (i.e., 15–25 °C). At a fluctuating regime with an average temperature of 30 °C (i.e., 25–35 °C), the relationship was curvilinear and could be described using a second-order polynomial equation. The estimated rate of evaporation was 0.02 and 0.09 mg/day at 5–15 and 15–25 °C, respectively; the estimated daily rate of evaporation at 25–35 °C varied with the time since first exposure. In an orchard, the estimated average rate of evaporation of pheromone from stoppers ranged from 0.05 to 0.31 mg/day and did not vary significantly with temperature. During the first 4 weeks of exposure in an orchard, the observed rate of evaporation was up to 4.4-fold greater than the rate predicted using the relationship between evaporation rate and constant temperatures observed in the laboratory. The potential for using natural rubber sleeve stoppers as controlled-release substrates in studies of sex-pheromone-mediated mating disruption of P. blancardella is discussed.

Résumé

Des bouchons-manchons de caoutchouc naturel ont été imbibés de 10 mg d’acétate de (E)-10-dodécén-1-yle, la principale composante de la phéromone de la Mineuse marbrée, Phyllonorycter blancardella (F.). En laboratoire, il s’est produit une diminution linéaire de la quantité de phéromone présente sur les bouchons au cours des 8 semaines d’exposition à des températures de 10, 15, 20 et 25 °C. À 30 et 35 °C, la relation était curvilinéaire et pouvait être représentée par une équation polynomiale de second degré. Le taux estimé d’évaporation se situait entre 0,03 mg par jour à 10 °C et 0,08 mg par jour à 25 °C; le taux d’évaporation à 30 et 35 °C variait en fonction de la durée d’exposition. Il s’est produit une diminution linéaire de la quantité de phéromone présente sur les bouchons au cours de 8 semaines d’exposition à des régimes de température fluctuante dont les températures moyennes étaient de 10 °C (i.e. 5–15 °C) et 20 °C (i.e. 15–25 °C). A un régime de température fluctuante dont la moyenne était de 30 °C (i.e. 25–35 °C), la relation était curvilinéaire et pouvait également être représentée par une équation polynomiale de second degré. Les taux d’évaporation ont été estimés à 0,02 mg par jour à 5–15 °C et à 0,09 mg par jour à 15–25 °C; le taux quotidien d’évaporation à 25–35 °C variait en fonction de la durée d’exposition. Dans un verger, le taux moyen d’évaporation de phéromone sur les bouchons a été estimé à 0,05–0,31 mg par jour et ne variait pas significativement en fonction de la température. Au cours des 4 premières semaines d’exposition dans un verger, le taux réel d’évaporation s’est avéré jusqu’à 4,4 fois plus élevé que le taux d’évaporation prévu d’après la relation obtenue en laboratoire entre le taux d’évaporation et la température constante. L’utilité des bouchons-manchons de caoutchouc naturel comme substrats de libération contrôlée dans les études d’arrêt du processus d’accouplement par l’intermédiaire des phéromones chez P. blancardella fait l’objet d’une discussion.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atmospheric Environment Service. 1993. Canadian climate normals, 1961–1990: Ontario. Atmospheric Environment Service, Environment Canada, Downsview, ON.Google Scholar
Audemard, H. 1988. Mating disruption with pheromones in Western Europe. Agriculture, Ecosystems and Environment 21: 101110.CrossRefGoogle Scholar
Baker, T.C., Hansson, B.S., Löfstedt, C., and Löfqvist, J.. 1989. Adaptation of male moth antennal neurons in a pheromone plume is associated with cessation of pheromone-mediated flight. Chemical Senses 14: 439448.CrossRefGoogle Scholar
Bakke, A., and Lie, R.. 1989. Mass trapping. pp. 6787in Jutsum, A.R., and Gordon, R.F.S. (Eds.), Insect Pheromones in Plant Protection. John Wiley and Sons, New York.Google Scholar
Butler, L.I., and McDonough, L.M.. 1979. Insect sex pheromones: evaporation rates of acetates from natural rubber septa. Journal of Chemical Ecology 5: 825837.CrossRefGoogle Scholar
Butler, L.I., and McDonough, L.M.. 1981. Insect sex pheromones: evaporation rates of alcohols and acetates from natural rubber septa. Journal of Chemical Ecology 7: 627633.CrossRefGoogle ScholarPubMed
Campion, D.G., Critchley, B.R., and McVeigh, L.J.. 1989. Mating disruption. pp. 89119in Jutsum, A.R., and Gordon, R.F.S. (Eds.), Insect Pheromones in Plant Protection. John Wiley and Sons, New York.Google Scholar
Cardé, R.T., and Minks, A.K.. 1995. Control of moth pests by mating disruption. Annual Review of Entomology 40: 559585.CrossRefGoogle Scholar
Coli, W.M., and Leahy, K.. 1994. Current and potential management tactics for leafminers (Lepidoptera: Gracillariidae) in North American apple orchards. pp. 6782in Maier, C.T. (Ed.), Integrated Management of Tentiform Leafminers, Phyllonorycter spp. (Lepidoptera: Gracillariidae), in North American Apple Orchards. Thomas Say Publications in Entomology, Entomological Society of America, Lanham, MD.Google Scholar
Dennehy, T.J., Roelofs, W.L., Taschenberg, E.F., and Taft, T.N.. 1990. Mating disruption for control of grape berry moth in New York vineyards. pp. 223240in Ridgway, R., Silverstein, R.M., and Inscoe, M. (Eds.), Behavior-modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants. Marcel Dekker, Inc., New York.Google Scholar
Flint, H.M., Butler, L., McDonough, L.M., Smith, R.L., and Forey, D.E.. 1978. Pink bollworm: response to various emission rates of gossyplure in the field. Environmental Entomology 7: 5761.CrossRefGoogle Scholar
Golub, M., Weatherston, J., and Benn, M.H.. 1983. Measurement of release rates of gossyplure from controlled release formulations by mini-airflow method. Journal of Chemical Ecology 9: 323333.CrossRefGoogle ScholarPubMed
Grant, A.J., Mankin, R.W., and Mayer, M.S.. 1989. Neurophysiological responses of pheromone-sensitive receptor neurons on the antenna of Trichoplusia ni (Hübner) to pulsed and continuous stimulation regimes. Chemical Senses 14: 449462.CrossRefGoogle Scholar
Greenway, A.R., Davis, S.A., and Smith, M.C.. 1981. Analysis of field-weathered lures containing (E)-10-dodecen-l-yl acetate, a sex attractant for the pea moth, Cydia nigricana (F.). Journal of Chemical Ecology 7: 10491056CrossRefGoogle ScholarPubMed
Hall, D.R., and Marrs, G.J.. 1989. Microcapsules. pp. 199248in Jutsum, A.R., and Gordon, R.F.S. (Eds.), Insect Pheromones in Plant Protection. John Wiley and Sons, New York.Google Scholar
Landolt, P.J., and Heath, R.R.. 1987. Role of female-produced sex pheromone in behavioral reproductive isolation between Trichoplusia ni (Hübner) and Pseudoplusia includens (Walker) (Lepidoptera: Noctuidae, Plusiinae). Journal of Chemical Ecology 13: 10051018.CrossRefGoogle ScholarPubMed
Maier, C.T. 1994. Introduction. pp. 15in Maier, C.T. (Ed.), Integrated Management of Tentiform Leafminers, Phyllonorycter spp. (Lepidoptera: Gracillariidae), in North American Apple Orchards. Thomas Say Publications in Entomology, Entomological Society of America, Lanham, MD.CrossRefGoogle Scholar
Maitlen, J.C., McDonough, L.M., Moffitt, H.R., and George, D.A.. 1976. Codling moth sex pheromone: baits for mass trapping and population survey. Environmental Entomology 5: 199202.CrossRefGoogle Scholar
McDonough, L.M. 1991. Controlled release of insect sex pheromones from a natural rubber substrate. pp. 106124in Hedin, P.A. (Ed.), Naturally Occurring Pest Bioregulators. ACS Symposium Series 449.Google Scholar
McDonough, L.M., Brown, D.F., and Aller, W.C.. 1989. Insect sex pheromones: effect of temperature on evaporation rate of acetates from rubber septa. Journal of Chemical Ecology 15: 779790.CrossRefGoogle ScholarPubMed
Quisumbing, A.R., and Kydonieus, A.F.. 1989. Plastic laminate dispensers. pp. 149171in Jutsum, A.R., and Gordon, R.F.S. (Eds.), Insect Pheromones in Plant Protection. John Wiley and Sons, New York.Google Scholar
Roelofs, W.L., Reissig, W.H., and Weires, R.W.. 1977. Sex attractant for the spotted tentiform leaf miner moth, Lithocolletis blancardella. Environmental Entomology 6: 373374.CrossRefGoogle Scholar
Swenson, D.W., and Weatherston, I.. 1989. Hollow-fiber controlled-release systems. pp. 173197in Jutsum, A.R., and Gordon, R.F.S. (Eds.), Insect Pheromones in Plant Protection. John Wiley and Sons, New York.Google Scholar
Teal, P.E.A., Tumlinson, J.H., and Heath, R.R.. 1986. Chemical and behavioral analysis of volatile sex pheromone components released by calling Heliothis virescens (F.) females (Lepidoptera: Noctuidae). Journal of Chemical Ecology 12: 107126.CrossRefGoogle Scholar
Trimble, R.M. 1984. An attractant-baited sticky trap for monitoring the spotted tentiform leafminer Phyllonorycter blancardella (F.) (Lepidoptera: Gracillariidae). The Canadian Entomologist 116: 15811583.CrossRefGoogle Scholar
Trimble, R.M. 1986. Assessment of a sex attractant trap for monitoring the spotted tentiform leafminer, Phyllonorycter blancardella (Lepidoptera: Gracillariidae): relationship between male and female emergence and between trap catches and emergence. The Canadian Entomologist 118: 12411252.CrossRefGoogle Scholar
Trimble, R.M., and Hagley, E.A.C.. 1988. Evaluation of mass trapping for controlling the spotted tentiform leafminer, Phyllonorycter blancardella (Fabr.) (Lepidoptera: Gracillariidae). The Canadian Entomologist 120: 101107.CrossRefGoogle Scholar
Weatherston, I. 1989. Alternative dispensers for trapping and disruption. pp. 249278in Jutsum, A.R., and Gordon, R.F.S. (Eds.), Insect Pheromones in Plant Protection. John Wiley and Sons, New York.Google Scholar
Zar, J.H. 1984. Biostatistical Analysis. 2nd ed. Prentice-Hall, Inc., Englewood Cliffs, NJ.Google Scholar