Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T13:06:56.707Z Has data issue: false hasContentIssue false

European ectoparasitoids of two classical weed biological control agents released in North America

Published online by Cambridge University Press:  03 January 2012

Franck J. Muller
Affiliation:
CABI Europe—Switzerland, Rue des Grillons 1, CH-2800 Delémont, Switzerland
Peter G. Mason*
Affiliation:
Research Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada K1A 0C6
Lloyd M. Dosdall
Affiliation:
4-10 Agriculture/Forestry Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
Ulrich Kuhlmann
Affiliation:
CABI Europe—Switzerland, Rue des Grillons 1, CH-2800 Delémont, Switzerland
*
1Corresponding author (e-mail: [email protected]).

Abstract

The ceutorhynchine weevils Hadroplontus litura (F.) and Microplontus edentulus (Schultze) (Coleoptera: Curculionidae), are established in North America as biological control agents for Canada thistle, Cirsium arvense (L.) Scop., and scentless chamomile, Tripleurospermum perforatum (Mérat) M. Lainz (Asteraceae), respectively. In North America, both weeds occur sympatrically and in similar habitats as another ceutorhynchine, Ceutorhynchus obstrictus (Marsham) (cabbage seedpod weevil), an important pest of canola, Brassica napus L., and Brassica rapa L. (Brassicaceae). Ceutorhynchinae weevils released to control weeds in cultivated crops may serve as alternate hosts if agents released for biological control of C. obstrictus are not specific to that species. Parasitoids associated with M. edentulus and H. litura inflict similar levels of mortality on their hosts, yet a single species was associated with the latter host, whereas 13 species attacked the former. The stem-mining M. edentulus appears to be at some risk but not the root-crown feeding H. litura, should the parasitoids Trichomalus perfectus (Walker) and Mesopolobus morys (Walker) (Hymenoptera: Pteromalidae) be introduced as biological control agents of the silique-feeding C. obstrictus. These findings suggest that feeding niche may be an important criterion for developing a nontarget species test list for host-range testing of potential biological control agents.

Résumé

Les charançons Hadroplontus litura (F.) et Microplontus edentulus (Schultze) (Coleoptera : Curculionidae) sont établis en Amérique du Nord comme agents de lutte biologique contre le chardon des champs (Cirsium arvense (L.) Scop.) et la matricaire inodore (Tripleurospermum perforatum (Mérat) M. Lainz (Asteraceae)), respectivement. Ces deux mauvaises herbes sont sympatriques et poussent dans des milieux semblables à ceux occupés par le charançon de la graine du chou(Ceutorhynchus obstrictus (Marsham)), important ravageur du canola (Brassica napus L., Brassica rapa L. (Brassicaceae)) en Amérique du Nord. Les charançons de la sous-famille des Ceutorhynchinés lâchés dans les cultures pour lutter contre les mauvaises herbes peuvent aussi servir d’hôtes aux agents de lutte biologique utilisés contre le C. obstrictus si ces agents ne sont pas spécifiques à ce ravageur. On a observé que des parasitoïdes associés à M. edentulus et H. litura ont entraîné des taux de mortalité similaires chez leurs hôtes, mais qu’une seule espèce de parasitoïde était associée à H. litura, tandis que 13 espèces attaquaient M. edentulus. Microplontus edentulus, mineur des tiges, serait menacé alors que H. litura, qui s’attaque au collet, ne le serait pas si les parasitoïdes Trichomalus perfectus (Walker) et Mesopolobus morys (Walker) (Hymenoptera : Pteromalidae) étaient introduits comme agents de lutte biologique contre C. obstrictus, qui s’attaque aux siliques. Ces résultats laissent penser que la niche alimentaire pourrait être un critère important dans l’établissement de listes d’espèces non ciblées à considérer dans les essais visant à déterminer les gammes d’hôtes des agents de lutte biologique potentiels.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous. 2009. Biological control agent: Microplontus edentulus Schultze [online]. Available from http://www.for.gov.bc.ca/hfp/biocontrol/agents/Microplontus_edentulus.htm [accessed 7 September 2010].Google Scholar
Askew, R.R., and Shaw, S.R. 1986. Parasitoid communities. In Insect parasitoids. Edited by Greathead, D. and Waage, J.. Academic Press, London, United Kingdom. pp. 225229.Google Scholar
Bacher, S. 1993. Vergleichende ökologische Studien über zwei sympatrische Rüsselkäferarten an der Geruchlosen Kamille (Tripleurospermum perforatum). Diplomarbeit, Zoologisches Institut, Christian-Albrechts-Universität, Kiel, Germany.Google Scholar
Bauer, H. (Editor). 2005. Determination list of entomophagous insects nr.14. Bulletin de la Section Regionale Ouest Palaearctique, Organisation Internationale de Lutte Biologique, 28: 171.Google Scholar
Bonnemaison, L. 1957. Le charançon des siliques (Ceutorhynchus assimilis Payk.) biologie et méthodes de lutte. Annales des Épiphytes, 8: 387542.Google Scholar
Boucek, Z. 1977. A faunistic review of the Yugoslavian Chalcidoidea (parasitic Hymenoptera). Acta Entomologica Jugoslavica, 13(Suppl. 32): 1145.Google Scholar
Charlet, L.D., Armstrong, J.S., and Hein, G.L. 2002. Sunflower stem weevil and its larval parasitoids on the central and northern plains of the USA. BioControl, 47: 513523. doi:10.1023/A: 1016567930895.Google Scholar
Coombs, E.M. 2004. Factors that affect successful establishment of biological control agents. In Biological control of invasive plants in the United States. Edited by Coombs, E.M., Clark, J. K., Piper, G. L., and Cofrancesco, A.F.. Oregon State University Press, Corvallis, Oregon. pp. 8594.Google Scholar
Darbyshire, S.J. 2003. Inventory of Canadian agricultural weeds. Agriculture and Agri-Food Canada, Research Branch, Ottawa, Ontario, Canada, Catalogue No. A42-100/2003E-IN.Google Scholar
Dmoch, J. 1975. Study on the parasites of the cabbage seedpod weevil (Ceutorhynchus assimilis Payk.). I. Species composition and economic importance of the larval ectoparasites. Roczniki Nauk Rolniczych, 5: 99112.Google Scholar
Donald, W.W. 1990. Management and control of Canada thistle (Cirsium arvense). Reviews of Weed Science, 5: 193250.Google Scholar
Dosdall, L.M., and Mason, P.G. 2010. Key pests and parasitoids of oilseed rape or canola in North America and the importance of parasitoids in integrated management. In Biocontrol-based integrated management of oilseed rape pests. Edited by Williams, I.H.. Springer-Verlag Press, Dordrecht, The Netherlands. pp. 167214.Google Scholar
Dosdall, L.M., and Moisey, D.W.A. 2004. Developmental biology of the cabbage seedpod weevil, Ceutorhynchus obstrictus (Coleoptera: Curculionidae), in spring canola, Brassica napus, in western Canada. Annals of the Entomological Society of America, 97: 458465. doi:10.1603/0013-8746(2004)097[0458:DBOTCS]2.0.CO;2.Google Scholar
Ferrero-Serrano, Á., Collier, T.R., Hild, A.L., Mealor, B.A., and Smith, T. 2008. Combined impacts of native grass competition and introduced weevil herbivory on Canada thistle (Cirsium arvense). Rangeland Ecology and Management, 61: 529534. doi:10.2111/07-142R.1.CrossRefGoogle Scholar
Freese, G. 1994. The insect complexes associated with the stems of seven thistle species. Entomologia Generalis, 19: 191207.Google Scholar
Freese, G. 1997. Insektenkomplexe in Pflanzenstengeln. Bayreuth Institut für Terrestrische Ö–kosystemforschung, Bayreuth University, Germany.Google Scholar
Gassmann, A. 1995. Europe as a source of biological control agents of exotic invasive weeds: status and implications. Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 68: 313322.Google Scholar
Graham, M.W.R. 1969. The Pteromalidae of North-Western Europe (Hymenoptera: Chalcidoidea). Bulletin of the British Museum (Natural History) Entomology (Suppl. 16): 1908.CrossRefGoogle Scholar
Gumovski, A.V. 2001. The status of some genera allied to Chrysonotomyia and Closterocerus (Hymenoptera: Eulophidae, Entedoninae), with description of a new species from Dominican amber. Phegea, 29: 125141.Google Scholar
Hansson, C. 1990. A taxonomic study on the Palearctic species of Chrysonotomyia Ashmead and Neochrysocharis Kurdjumov (Hymenoptera: Eulophidae). Entomologica Scandinavica, 21: 2952.Google Scholar
Hansson, C. 1994. Re-evaluation of the genus Closterocerus Westwood (Hymenoptera: Eulophidae), with a revision of the Nearctic species. Entomologica Scandinavica, 25: 125.Google Scholar
Hansson, C. 1996. Taxonomic revision of the Nearctic species of Omphale Haliday (Hymenoptera: Eulophidae). Entomologica Scandinavica (Suppl. 49): 178.Google Scholar
Hawkins, B.A. 1994. Pattern and process in hostparasitoid interactions. Cambridge University Press, Cambridge, United Kingdom.CrossRefGoogle Scholar
Hein, G.L., and Wilson, R.G. 2004. Impact of Ceutorhynchus litura feeding on root carbohydrate levels in Canada thistle (Cirsium arvense). Weed Science, 52: 628633. doi:10.1614/WS-03-099R1.Google Scholar
Hinz, H.L., and McClay, A.S. 2000. Ten years of scentless chamomile: prospects for the biological control of a weed of cultivated land. In Proceedings of the Xth International Symposium on Biological Control of Weeds. Edited by Spencer, N.R.. Bozeman, Montana, USA. pp. 537550.Google Scholar
Hinz, H.L., Bacher, S., McClay, A.S., and De Clerk-Floate, R.A. 1996. Microplontus (= Ceutorhynchus) edentulus (Schultz.) (Col.: Curculionidae), a candidate for the biological control of scentless chamomile in North America. Revised Final Report, International Institute of Biological Control. Delémont, Switzerland.Google Scholar
Knight, J. 2001. Alien versus predator. Nature (London), 412: 115116. doi:10.1038/35084271 PMID:11449232.Google Scholar
Kuhlmann, U., and Mason, P.G. 2002. Use of field host range surveys for selecting candidate non-target species for physiological host specificity testing of entomophagous biological control agents. In Proceedings of the International Symposium on Biological Control of Arthropods, Honolulu, Hawaii, 14–18 January 2002. Edited by Van Driesche, R.G.. United States Department of Agriculture, Forest Service, Morgantown, West Virginia. FHTET-2003-05. pp. 370377.Google Scholar
Kuhlmann, U., Dosdall, L.M., and Mason, P.G. 2002. Ceutorhynchus obstrictus (Marsham), cabbage seedpod weevil (Coleoptera: Curculionidae). In Biological control programmes in Canada, 1981–2000. Edited by Mason, P.G. and Huber, J.T.. CABI Publishing, Wallingford, Oxon, United Kingdom. pp. 5258.Google Scholar
Kuhlmann, U., Mason, P.G., Hinz, H.L., Blossey, B., De Clerck-Floate, R.A., Dosdall, L. et al. , 2006 a. Avoiding conflicts between insect and weed biological control: selection of nontarget species for test list to assess host specificity of cabbage seedpod weevil parasitoids. Journal of Applied Entomology, 130: 129141. doi:10.1111/j.1439-0418.2006.01040.x.CrossRefGoogle Scholar
Kuhlmann, U., Schaffner, U., and Mason, P.G. 2006 b. Selection of non-target species for host specificity testing. In Environmental impact of invertebrates for biological control of arthropods: methods and risk assessment. Edited by Bigler, F., Babendreier, D., and Kuhlmann, U.. CABI Publishing, Wallingford, Oxon, United Kingdom. pp. 1537.Google Scholar
Mason, P. G., and Huber, J. T. (Editors). 2002. Biological control programmes in Canada, 1981–2000. CABI Publishing, Wallingford, United Kingdom.Google Scholar
McClay, A.S., Bourchier, R.S., Butts, R.A., and Peschken, D.P. 2002 a. Cirsium arvense (L.) Scopoli, Canada thistle (Asteraceae). In Biological control programmes in Canada, 1981–2000. Edited by Mason, P.G. and Huber, J.T.. CABI Publishing, Wallingford, Oxon, United Kingdom. pp. 318330.Google Scholar
McClay, A.S., Hinz, H.L., De Clerck-Floate, R.A, and Peschken, D.P. 2002 b. Matricaria perforata Mérat, scentless chamomille (Asteraceae). In Biological control programmes in Canada, 1981–2000. Edited by Mason, P.G. and Huber, J.T.. CABI Publishing, Wallingford, Oxon, United Kingdom. pp. 395402.Google Scholar
McFadyen, R.E. 1998. Biological control of weeds. Annual Review of Entomology, 43: 369393. doi: 10.1146/annurev.ento.43.1.369 PMID:15012395.Google Scholar
Mills, N.J. 1994. Parasitoid guilds: a comparative analysis of the parasitoid communities of tortricids and weevils. In Parasitoid community ecology. Edited by Hawkins, B. A. and Sheehan, W.. Oxford Science Publications, Oxford, UK. pp. 3046.Google Scholar
Mitroiu, M.D. 2001. Revision of the Chalcidoidea: Pteromalidae (Hymenoptera) collections of the Belgian Royal Institute of Natural Sciences and the discovery of 31 new species for Belgium. Bulletin de la Societé Royale Belge d'Entomologie, 137: 9197.Google Scholar
Peschken, D.P., and Wilkinson, A.T.S. 1981. Biocontrol of Canada thistle (Cirsium arvense): releases and effectiveness of Ceutorhynchus litura (Coleoptera: Curculionidae) in Canada. The Canadian Entomologist, 113: 777785. doi:10.4039/Ent113777-9.Google Scholar
Schauff, M.E. 1991. The Holarctic genera of Entedoninae (Hymenoptera: Eulophidae). Contrib. American Entomological Institute, 26(4).Google Scholar
Schroeder, D., Mueller-Schaerer, H., and Stinson, C.S.A. 1993. A European weed survey in 10 major crop systems to identify targets for biological control. Weed Research, 33: 449458. doi:10.1111/j.1365-3180.1993.tb01961.x.Google Scholar
Stachon, W.J., and Zimdahl, R.L. 1980. Allelopathic activity of Canada thistle (Cirsium arvense) in Colorado. Weed Science, 28: 8386.Google Scholar
Tremblay, E. 1968. Observations on the weevils of hemp (Col., Curculionidae). Morphological and biological notes, and chemical control. Bollettino del Laboratorio di Entomologia Agraria Filippo Silvestri, Portici, 26: 139190.Google Scholar
Ulber, B. 2003. Parasitoids of ceutorhynchid stem weevils. In Biocontrol of oilseed rape pests. Edited by Alford, D.V.. Blackwell Science, Oxford, United Kingdom. pp. 8795.CrossRefGoogle Scholar
Ulber, B., Williams, I.H., Klukowski, Z., Luik, A., and Nilsson, C. 2010. Parasitoids of oilseed rape pests in Europe: key species for conservation biocontrol. In Biocontrol-based integrated management of oilseed rape pests. Edited by Williams, I.H.. Springer-Verlag Press, Dordrecht, The Netherlands. pp. 4576.Google Scholar
Vidal, S. 1993. Determination list of entomophagous insects No. 12. Bulletin de la Section Regionale Ouest Palaearctique, Organisation Internationale de Lutte Biologique, 16: 128.Google Scholar
Vidal, S. 1997. Determination list of entomophagous insects. No. 13. Bulletin Section Regionale Ouest Palaearctique, Organisation Internationale de Lutte Biologique, 20: 125.Google Scholar
Vidal, S. 2003. Identification of hymenopterous parasitoids associated with oilseed rape pests. In Biocontrol of oilseed rape pests. Edited by Alford, D.V.. Blackwell Science, Oxford, United Kingdom. pp. 161179.Google Scholar
White, D.J., Haber, E., and Keddy, C. 1993. Invasive plants of natural habitats in Canada. Ottawa, Ontario.Google Scholar
Williams, I.H. 2003. Parasitoids of cabbage seed weevil. In Biocontrol of oilseed rape pests. Edited by Alford, D.V.. Blackwell Science, Oxford, United Kingdom. pp. 97112.Google Scholar
Wittenberg, R., and Cock, M.J.W. (Editors). 2001. Invasive alien species: a toolkit of best prevention and management practices. CABI Publishing, Wallingford, Oxon, United Kingdom.CrossRefGoogle Scholar
Woo, S.L., Thomas, A.G., Peschken, D.P., Bowes, G.G., Douglas, D.W., Harms, V.L., and McClay, A.S. 1991. The biology of Canadian weeds — Matricaria perforata Mérat (Asteraceae). Canadian Journal of Plant Science, 71: 11011119.Google Scholar
Yu, D.S. 2009. Taxapad: Scientific names for information management [online]. Available from http://www.taxapad.com/taxapadmain.php [accessed 7 September 2010].Google Scholar
Zwölfer, H., and Harris, P. 1966. Ceutorhynchus litura (F.) (Col., Curculionidae), a potential insect for the biological control of thistle, Cirsium arvense (L.) Scop., in Canada. Canadian Journal of Zoology, 44: 2338. doi:10.1139/z66-002.Google Scholar