Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T04:46:36.738Z Has data issue: false hasContentIssue false

Epicuticular wax on pea plants decreases instantaneous search rate of Hippodamia convergens larvae and reduces attachment to leaf surfaces

Published online by Cambridge University Press:  02 April 2012

C.E. Rutledge*
Affiliation:
Plant Soil and Entomological Sciences, University of Idaho, Moscow, Idaho, United States 83844-2339
S.D. Eigenbrode
Affiliation:
Plant Soil and Entomological Sciences, University of Idaho, Moscow, Idaho, United States 83844-2339
*
1Corresponding author (e-mail: [email protected]).

Abstract

Crop cultivar can affect the ability of natural enemies to control pest populations. Peas, Pisum sativum L. (Fabaceae), with a reduced epicuticular wax bloom have reduced pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), populations in the field than peas with a normal-wax bloom. In this paper we use the functional response to examine predation by Hippodamia convergens Guérin de Méneville (Coleoptera: Coccinellidae) larvae foraging on pea plants with a normal- and a reduced-wax bloom. We found that Hippodamia convergens shows a Type II functional response on both phenotypes of peas. Hippodamia convergens consumed significantly more pea aphids on reduced-wax plants than on normal-wax plants. The instantaneous search rate, a, was higher for predators on reduced-wax plants, but the handling time, Th, was similar for predators on both wax phenotypes. In addition, we tested the ability of H. convergens larvae to attach to the surface of normal-wax and reduced-wax pea leaves. We found that H. convergens larvae attach more strongly to reduced-wax peas than to normal-wax peas. These results suggest that predation of pea aphid by H. convergens is enhanced on reduced-wax peas due to increased ability of predators to attach to these plants, and as a result, search for and find aphids.

Résumé

Le type de cultivar peut affecter la capacité des ennemis naturels à lutter contre les populations d'insectes nuisibles. Les pois, Pisum sativum L. (Fabaceae), qui ont une production de cire épicuticulaire réduite sont moins parasités par les populations du puceron du pois, Acyrthosiphon pisum (Harris) (Hemiptera : Aphididae), en nature que les pois avec une couche cireuse normale. Nous avons examiné la réponse fonctionnelle de la prédation exercée par les larves d'Hippodamia convergens Guérin de Méneville (Coleoptera : Coccinellidae) se nourrissant sur des plants de pois à production normale ou réduite de cire. Hippodamia convergens a une réponse fonctionnelle de Type II sur les deux phénotypes de pois, mais consomme significativement plus de pucerons du pois sur les plants moins cireux. La vitesse instantanée de recherche, a, est plus grande chez les prédateurs qui sont sur les plants moins cireux, mais la durée de manipulation, Th, est semblable sur les deux types de plants. Nous avons également examiné la capacité des larves d'H. convergens de s'agripper à la surface de feuilles normales et de feuilles à couche de cire réduite. Les larves d'H. convergens se fixent plus solidement sur ces dernières que sur les feuilles normales. Ces résultats indiquent que la prédation exercée sur les pucerons du pois par H. convergens est favorisée sur les plants à couche de cire réduite parce que les prédateurs ont plus de facilité à s'y agripper et peuvent donc plus aisément chercher et trouver les pucerons.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, A.A., Karban, R. 1997. Domatia mediate plant–arthropod mutualism. Nature (London) 387: 562–3CrossRefGoogle Scholar
Bates, D.M., Watts, D.G. 1988. Nonlinear regression analysis and its applications. New York: John Wily and Sons, IncCrossRefGoogle Scholar
Carter, M.C., Sutherland, D., Dixon, A.F.G. 1984. Plant structure and the searching efficiency of coccinellid larvae. Oecologia 63: 394–7CrossRefGoogle ScholarPubMed
Coll, M., Smith, L.A., Ridgway, R.L. 1997. Effect of plants on the searching efficiency of a generalist predator: the importance of predator–prey spatial association. Entomologia Experimentalis et Applicata 83: 110CrossRefGoogle Scholar
Cortesero, A.M., Stapel, J.O., Lewis, W.J. 2000. Understanding and manipulating plant attributes to enhance biological control. Biological Control 17: 3549CrossRefGoogle Scholar
Daly, G.T. 1964. Leaf-surface waxes in Poa colensoi. Journal of Experimental Botany 15: 160–5CrossRefGoogle Scholar
deClerq, P., Mohaghegh, J., Tirry, I. 2000. Effect of host plant on the functional response of the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Biological Control 18: 6570CrossRefGoogle Scholar
Eigenbrode, S.D., Espeli, K.E. 1995. Effects of plant epicuticular lipids on insect herbivores. Annual Review of Entomology 40: 171–94CrossRefGoogle Scholar
Eigenbrode, S.D., Kabalo, N.N. 1999. Effects of Brassica oleracea wax blooms on predation and attachment by Hippodamia convergens. Entomologia Experimentalis et Applicata 91: 125–30CrossRefGoogle Scholar
Eigenbrode, S.D., White, C., Rhode, M., Simon, C.J. 1998. Behavior and effectiveness of Hippodamia convergens (Coleoptera: Coccinellidae) as a predator of Acryrthosiphon pisum on a glossy wax mutant of Pisum sativum. Environmental Entomology 91: 902–9CrossRefGoogle Scholar
Frazer, B.D., McGregor, R.R. 1994. Searching behavior of adult female Coccinellidae (Coleoptera) on stem and leaf models. The Canadian Entomologist 126: 389–99CrossRefGoogle Scholar
Holling, C.S. 1966. The functional response of invertebrate predators to prey density. Memoirs of the Entomological Society of Canada. 48: 187Google Scholar
Jenks, M.A., Ashworth, E.N. 1999. Plant epicuticular waxes: function, production and genetics. Horticultural Reviews 23: 168Google Scholar
Juliano, S.A. 1993. Nonlinear curve fitting: predation and functional response curves. pp 159–82 in Scheiner, S.M., Gurevitch, J. (Eds), Design and analysis of ecological experiments. New York: Chapman and HallGoogle Scholar
Kareiva, P., Perry, R. 1989. Leaf overlap and the ability of ladybird beetles to search among plants. Ecological Entomology 14: 127–9CrossRefGoogle Scholar
Kareiva, P., Sahakian, R. 1990. Tritrophic effects of a simple architectural mutation in pea plants. Nature (London) 345: 433–4CrossRefGoogle Scholar
Kessler, A., Baldwin, I.T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science (Washington DC) 291: 2141–3CrossRefGoogle ScholarPubMed
Limburg, D.D., Rosenheim, J.A. 2001. Extrafloral nectar consumption and its influence on survival and development of an omnivorous predator, larval Chrysoperla plorabunda (Neuroptera: Chrysopidae). Environmental Entomology 30: 595604CrossRefGoogle Scholar
Marx, G.A. 1969. Two additional genes conditioning wax formation. Pisum Newsletter 1: 10–1Google Scholar
Mulroy, T.W. 1979. Spectral properties of heavily glaucous and non-glaucous leaves of a succulent rosetteplant. Oecologia 38: 349–57CrossRefGoogle ScholarPubMed
Obrycki, J.J., Tauber, M.J. 1984. Natural enemy activity on glandular pubescent potato plants in the greenhouse: an unreliable predictor of effects in the field. Environmental Entomology 13: 679–83CrossRefGoogle Scholar
Rogers, D. 1972. Random search and insect population models. Journal of Animal Ecology 41: 369–83CrossRefGoogle Scholar
Roitberg, B., Myers, J.H. 1979. Behavioural and physiological adaptations of pea aphids (Homoptera: Aphididae) to high ground temperatures and predator disturbance. The Canadian Entomologist 111: 515–9CrossRefGoogle Scholar
Röse, U.S.R., Alborn, H.T., Makranczy, G., Lewis, W.J., Tumlinson, J.H. 1997. Host recognition by the specialist endoparasitoid Microplitis croceipes (Hymenoptera: Braconidae): role of host- and plant-related volatiles. Journal of Insect Behavior 10: 313–30CrossRefGoogle Scholar
Rutledge, C.E., Robinson, A.P., Eigenbrode, S.D. 2003. Effects of a simple plant morphological mutation on the arthropod community and the impacts of predators on a principal insect herbivore Oecologia. In pressCrossRefGoogle Scholar
SAS Institute Inc. 2002. SAS/STAT user's guide. Cary, North Carolina: SAS Institute IncGoogle Scholar
Treacy, M.F., Benedict, J.H., Lopez, J.D., Morrison, R.K. 1987. Functional response of a predator (Neuroptera: Chrysopidae) to bollworm (Lepidoptera: Noctuidae) eggs on smoothleaf, hirsute and pilose cottons. Journal of Economic Entomology 80: 376–9CrossRefGoogle Scholar
Turlings, T.C.J., Tumlinson, J.H., Heath, R.R., Proveaux, A.T., Doolittle, R.E. 1991. Isolation and identification of allelochemicals that attract the larval parasitoid Cotesia marginiventris (Cresson) to the microhabitat of one of its hosts. Journal of Chemical Ecology 17: 2235–51CrossRefGoogle Scholar
Walter, D.E. 1996. Living on leaves, mites, tomenta and leaf domatia. Annual Review of Entomology 41: 101–14CrossRefGoogle ScholarPubMed
White, C., Eigenbrode, S.D. 2000 a. Leaf surface wax bloom in Pisum sativum influences predation and intraguild interactions involving two predator species. Oecologia 124: 252–9CrossRefGoogle Scholar
White, C., Eigenbrode, S.D. 2000 b. Effects of surface wax variation in Pisum sativum on herbivorous and entomophagous insects in the field. Environmental Entomology 29: 773–80CrossRefGoogle Scholar