Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T13:39:54.289Z Has data issue: false hasContentIssue false

ELECTROPHYSIOLOGICAL AND BEHAVIOURAL RESPONSES OF TOMICUS PINIPERDA AND TOMICUS MINOR (COLEOPTERA: SCOLYTIDAE) TO NON-HOST LEAF AND BARK VOLATILES

Published online by Cambridge University Press:  31 May 2012

Fredrik Schlyter*
Affiliation:
Chemical Ecology, Department of Crop Sciences, Swedish University of Agricultural Sciences, P.O. Box 44, SE-230 53 Alnarp, Sweden
Qing-He Zhang
Affiliation:
Chemical Ecology, Department of Crop Sciences, Swedish University of Agricultural Sciences, P.O. Box 44, SE-230 53 Alnarp, Sweden
Peter Anderson
Affiliation:
Chemical Ecology, Department of Crop Sciences, Swedish University of Agricultural Sciences, P.O. Box 44, SE-230 53 Alnarp, Sweden
John A. Byers
Affiliation:
Chemical Ecology, Department of Crop Sciences, Swedish University of Agricultural Sciences, P.O. Box 44, SE-230 53 Alnarp, Sweden
Lester J. Wadhams
Affiliation:
IACR Rothamsted, Harpenden, Herts, AL5 2JQ, United Kindgom
Jan Löfqvist
Affiliation:
Chemical Ecology, Department of Crop Sciences, Swedish University of Agricultural Sciences, P.O. Box 44, SE-230 53 Alnarp, Sweden
Göran Birgersson
Affiliation:
Chemical Ecology, Department of Botany, Götehorg University, Box 461, SE-405 30 Göteborg, Sweden
*
1 Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

Leaf and bark volatiles from non-host birches, Betula pendula Roth. and Betula pubescens Ehrh. (Betulaceae), and aspen, Populus tremula L. (Salicaceae), were tested on spring-dispersing Tomicus piniperda (L.) and Tomicus minor (Hart.) by gas chromatographic – electroantennographic detection (GC–EAD) and by attractant-baited traps in southern Sweden. GC–EAD analysis of the head-space volatiles from fresh bark chips of B. pendula revealed two green leaf alcohols, 1-hexanol and (Z)-3-hexen-1-ol, that consistently elicited antennal responses by T. piniperda and T. minor. Further analyses with synthetic mixtures showed that the antennae of these two Tomicus species also responded to other green leaf alcohols, such as (E)-2-hexen-1-ol found from the non-host leaves, and C8-alcohols, 3-octanol and 1-octen-3-ol, from bark of non-host birches and aspen. No antennal responses of the Tomicus species were observed to green leaf C6-aldehydes and C6-acetate or to non-host bark volatiles like trans-conophthorin, benzaldehyde, salicylaldehyde, and benzyl alcohol. In field trapping experiments, blends of electrophysiologically active green leaf alcohols or C8-alcohols resulted in reductions (> 60%) in the number of T. piniperda captured compared with that for the kairomone-baited trap. When these two blends were combined, trap catch was further reduced (90%), which was not significantly different from that for the blank control. Neither the blend of two green leaf aldehydes plus the acetate nor the bark compounds trans-conophthorin or benzyl alcohol reduced trap catches. Tomicus minor had a response pattern similar to that of T. piniperda. Hylurgops palliatus (Gyll.) (Coleoptera: Scolytidae) was attracted to the combination of kairomone and verbenone but not to kairomone and was not affected by the blends of green leaf volatiles. Our results suggest that selected leaf–bark C6-alcohols and the bark C8-alcohols may have potential in developing semiochemical-based management programs against both pine shoot beetles by repelling them from suitable breeding and feeding sites.

Résumé

Les substances volatiles émanant d’arbres non hôtes, les bouleaux Betula pendula Roth. et Betula pubescens Ehrh. (Betulaceae) et le peuplier tremble Populus tremula L. (Salicaceae), ont été testées sur les scolytes Tomicus piniperda (L.) et Tomicus minor (Hart.) par un système de détection combiné, chromatographie au gaz –électroantennographie (GC–EAD), au moment de la dispersion de printemps; de plus, nous avons installé des pièges garnis d’une substance attirante dans le sud de la Suède. L’analyse par GC–EAD des substances volatiles émanant de morceaux d’écorce frais de B. pendula a révélé la présence de deux alcools des feuilles vertes le 1-hexanol et le (Z)-3-hexen-1-ol qui provoquent constamment des réactions antennaires chez les deux scolytes. Des analyses plus poussées avec des mélanges synthétiques ont démontré que les deux espèces de Tomicus réagissent également à d’autres alcools des feuilles vertes, tels le (E)-2-hexen-1-ol trouvé dans les feuilles d’arbres non hôtes et les alcools C8, le 3-octanol et le 1-octen-3-ol trouvé dans l’écorce des arbres non hôtes, les deux bouleaux et le peuplier tremble. Les espèces de Tomicus n’ont manifesté aucune réaction antennaire aux aldéhydes et à l’acétate des feuilles vertes ou aux substances volatiles des écorces d’arbres non hôtes comme la trans-conophthorine, la benzaldéhyde, la salicylaldéhyde et l’alcool benzylique. Dans des expériences de piégeage en nature, des mélanges d’alcools de feuilles vertes qui provoquent des réactions électrophysiologiques ou d’alcools C8 ont entraîné des réductions (> 60%) des nombres de T. piniperda capturés comparativement aux nombres récoltés dans les pièges garnis de kairomones. En combinant les deux mélanges, le nombre d’insectes attrapés a diminué encore davantage (90%), nombre qui ne différait pas significativement du nombre obtenu dans les pièges témoins non garnis. Ni le mélange des deux aldéhydes des feuilles vertes avec l’acétate, ni les composés de l’écorce, la trans-conophthorine ou l’alcool benzylique, n’ont diminué les captures. Tomicus minor a eu le même type de réaction que T. piniperda Hylurgops palliatus (Gyll.) (Coleoptera : Scolytidae) est attiré par la combinaison kairomone–verbénone, mais pas par la kairomone seule, et il n’est pas affecté par les mélanges de substances volatiles émanant des feuilles vertes. Nos résultats indiquent que certains alcools C6 des feuilles et de l’écorce, de même que les alcools C8 de l’écorce peuvent s’avérer d’une grande utilité dans les programmes de lutte sémiochimique contre les scolytes des pins en les repoussant de leurs sites de reproduction ou d’alimentation.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderbrant, O., Schlyter, F., and Löfqvist, J. 1988. Dynamics of tree attack in the bark beetle Ips typographus under semi-epidemic conditions, pp. 3552in Payne, T.L., Saarenmaa, H. (Eds), Integrated Control of Scolytid Bark Beetles, Proceedings of the IUFRO Working Party on Bark Beetles Symposium, Vancouver, 3–10 July 1988. Blacksburg: Virginia Tech PressGoogle Scholar
Borden, J.H. 1989. Semiochemicals and bark beetle populations exploitation of natural phenomena by pest management strategists. Holarctic Ecology 12: 501–10Google Scholar
Borden, J.H., Wilson, I.M., Gries, R., Chong, L.J., Pierce, H.D. Jr, Gries, G. 1998. Volatiles from the bark of trembling aspen, Populus tremuloides Michx. (Salicaceae), disrupt secondary attraction by the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Chemoecology 8: 6975CrossRefGoogle Scholar
Byers, J.A. 1992. Attraction of bark beetles, Tomicus piniperda, Hylurgops palliatus, and Trypodendron domesticum, and other insects to short-chain alcohols and monoterpenes. Journal of Chemical Ecology 18: 2385–402CrossRefGoogle Scholar
Byers, J.A., Wood, D.L. 1980. Interspecific inhibition of the response of the bark beetles, Dendroctonus brevicomis and Ips paraconfusus, to their pheromones in the field. Journal of Chemical Ecology 6: 149–64CrossRefGoogle Scholar
Byers, J.A., Lanne, B.S., Löfqvist, J., Schlyter, F., Bergström, G. 1985. Olfactory recognition of host-tree susceptibility by pine shoot beetles. Naturwissenschaften 72: 324–6CrossRefGoogle Scholar
Byers, J.A., Lanne, B.S., Löfqvist, J. 1989. Host-tree unsuitability recognized by pine shoot beetles in flight. Experientia 45: 489–92CrossRefGoogle Scholar
Byers, J.A., Zhang, Q-H, Schlyter, F., Birgersson, G. 1998. Volatiles from non-host birch trees inhibit pheromone response in spruce bark beetles. Naturwissenschaften 85: 557–61CrossRefGoogle Scholar
Byers, J.A., Zhang, Q-H, Birgersson, G. 2000. Strategies of a bark beetle, Pityogenes bidentatus, in an olfactory landscape. Naturwissenschaften. In press.CrossRefGoogle Scholar
Deglow, E.K., Borden, J.H. 1998 a. Green leaf volatiles disrupt and enhance response to aggregation pheromones by the ambrosia beetle, Gnathotrichus sulcatus (LeConte) (Coleoptera: Scolytidae). Canadian Journal of Forest Research 28: 1697–705CrossRefGoogle Scholar
Deglow, E.K., Borden, J.H. 1998 b. Green leaf volatiles disrupt and enhance response by the ambrosia beetle, Gnathotrichus retusus (LeConte) (Coleoptera: Scolytidae), to pheromone-baited traps. Journal of the Entomological Society of British Columbia 95: 915Google Scholar
Dickens, J.C., Billings, R.F., Payne, T.L. 1991. Green leaf volatiles: a ubiquitous chemical signal modifies insect pheromone responses. pp. 277–80 in Hrdy, I. (Ed), Insect chemical ecology. Prague: Acadamia PrahaGoogle Scholar
Dickens, J.C., Billings, R.F., Payne, T.L. 1992. Green leaf volatiles interrupt aggregation pheromone response in bark beetles infecting pines. Experientia 48: 523–4CrossRefGoogle Scholar
Guerrero, A., Feixas, J., Pajares, J., Wadhams, L.J., Pickett, J.A., Woodcock, C.M. 1997. Semiochemically induced inhibition of behaviour of Tomicus destruens (Woll.) (Coleoptera: Scolytidae). Naturwissenschaften 84: 155–7CrossRefGoogle Scholar
Haack, R.A., Lawrence, R.K., Mccullough, D.G., Sadof, C.S. 1997. Tomicus piniperda in North America: an integrated response to a new exotic scolytid. pp. 6272in Gregoire, J.C., Leibhold, A.M., Stephen, F.M., Day, K.R., Salom, S.M. (Eds), Proceedings: Integrating Cultural Tactics into the Management of Bark Beetles and Reforestation Pests. US Forest Service General Technical Report NE-236Google Scholar
DPW, Huber, Gries, R., Borden, J.H., Pierce, H.D. Jr., 1999. Two pheromones of coniferophagous bark beetles found in the bark of non-host angiosperms. Journal of Chemical Ecology 25: 805–16Google Scholar
Kohnle, U., Densbom, S., Kölsch, P., Meyer, H., Francke, W. 1992. E-7-methyl-1,6-dioxaspiro [4.5]decane in the chemical communication of European Scolytidae and Nitidulidae (Coleoptera). Journal of Applied Entomology 114: 187–92CrossRefGoogle Scholar
Lanne, B.S., Schlyter, F., Byers, J.A., Löfqvist, J., Leufvén, A., Bergström, G., JNC, Van Der Pers, Unelius, R., Bæckström, P., Norin, T. 1987. Differences in attraction to semiochemicals present in sympatric pine shoot beetles, Tomicus minor and T. piniperda. Journal of Chemical Ecology 13: 1045–67CrossRefGoogle ScholarPubMed
Långström, B. 1984. Windthrown Scots pines as brood material for Tomicus piniperda and T. minor. Silva Fennica 18: 187–98CrossRefGoogle Scholar
Långström, B., Hellqvist, C. 1991. Shoot damage and growth losses following three years of Tomicus attacks in Scots pine stands close to a timber storage site. Silva Fennica 25: 133–45CrossRefGoogle Scholar
Poland, T.M., Haack, R.A. 2000. Pine shoot beetle, Tomicus piniperda (Coleoptera: Scolytidae), responses to common green leaf volatiles. Journal of Applied Entomology 124: 63–9CrossRefGoogle Scholar
Postner, M. 1974. Scolytidae, Borkenkäfer, Blastophagus. pp. 397400in Schwenke, W. (Ed), Die Forstschädlinge Europas. Hamburg: Verlag Paul PareyGoogle Scholar
Schlyter, F., Birgersson, G. 1999. Forest beetles. pp. 113–48 in Hardie, R.J., Minks, A. (Eds), Pheromones of non-lepidopteran insects associated with agricultural plants. Wallingford: CAB InternationalGoogle Scholar
Schlyter, F., Löfqvist, J. 1990. Colonisation patterns in the pine shoot beetle, Tomicus piniperda: effects of host declination, structure and presence of conspecifics. Entomologia Experimentalis et Applicata 54: 163–72CrossRefGoogle Scholar
Schlyter, F., Byers, J.A., Löfqvist, J., Leufvén, A., Birgersson, G. 1988. Reduction of attack density of the bark beetles Ips typographus and Tomicus piniperda on host bark by verbenone inhibition of attraction to pheromone and host kairomone. pp. 5368in Payne, T.L., Saarenmaa, H. (Eds), Integrated Control of Scolytid Bark Beetles, Proceedings of the IUFRO Working Party on Bark Beetles Symposium, Vancouver, 3–10 July 1988. Blacksburg: Virginia Tech PressGoogle Scholar
Schlyter, F., Löfqvist, J., Jakus, R. 1995. Green leaf volatiles and verbenone modify attraction of European Tomicus, Hylurgops, and Ips bark beetles. pp. 2944in Hain, F.P., Salom, S.M., Ravlin, W.F., Payne, T.L., Raffa, K.F. (Eds), Behavior, Population Dynamics, and Control of Forest Insects, Proceedings of a Joint IUFRO Working Party Conference, February 1994. Wooster: Ohio Agricultural Research and Development CenterGoogle Scholar
Schroeder, L.M. 1992. Olfactory recognition of non-hosts aspen and birch by conifer bark beetles Tomicus piniperda and Hylurgops palliatus. Journal of Chemical Ecology 18: 1583–93CrossRefGoogle Scholar
Schroeder, L.M., Eidmann, H.H. 1987. Gallery initiation by Tomicus piniperda (Coleoptera: Scolytidae) on Scots pine trees baited with host volatiles. Journal of Chemical Ecology 13: 1591–9CrossRefGoogle Scholar
Tømmerås, . 1989. Host selection by odorous compounds from host and non-host trees in bark beetles. Fauna Norvegica Series B 36: 75–9Google Scholar
Tømmerås, , Mustaparta, H. 1989. Single cell responses to pheromones, host and non-host volatiles in the ambrosia beetle Trypodendron lineatum. Entomologia Experimentalis et Applicata 52: 141–8CrossRefGoogle Scholar
Wilson, I.M., Borden, J.H., Gries, R., Gries, G. 1996. Green leaf volatiles as antiaggregants for the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Journal of Chemical Ecology 22: 1861–75CrossRefGoogle ScholarPubMed
Ye, H. 1991. On the bionomy of Tomicus piniperda (L.) (Coleoptera: Scolytidae) in the Kunming region of China. Journal of Applied Entomology 112: 366–9Google Scholar
Ye, H., Lieutier, F. 1997. Shoot aggregation by Tomicus piniperda (L.) (Col: Scolytidae) in Yunnan, southwestern China. Annales des Sciences Forestieres (Paris) 54: 635–41Google Scholar
Zhang, Q-H, Birgersson, G., Zhu, J-W, Löfstedt, C., Löfqvist, J., Schlyter, F. 1999 a. Leaf volatiles from nonhost deciduous trees: variation by tree species, season, and temperature and electrophysiological activity in Ips typographus. Journal of Chemical Ecology 25: 1923–43CrossRefGoogle Scholar
Zhang, Q-H, Schlyter, F., Anderson, P. 1999 b. Green leaf volatiles interrupt pheromone response of spruce bark beetle, Ips typographus. Journal of Chemical Ecology 25: 2847–61CrossRefGoogle Scholar
Zhang, Q-H, Schlyter, F., Birgersson, G. 2000. Bark volatiles from non-host angiosperm trees of spruce bark beetle, Ips typographus L. (Coleoptera: Scolytidae): chemical and electrophysiological analysis. Chemoecology. 10: 6980CrossRefGoogle Scholar
Zhang, Q-H, Liu, G-T, Schlyter, F., Birgersson, G., Anderson, P., Valeur, P. 2001. Olfactory responses of Ips duplicatus from Inner Mongolia, China to nonhost leaf and bark volatiles. J. Chem. Ecol. In press.Google Scholar