Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T11:29:32.172Z Has data issue: false hasContentIssue false

EFFICIENCY OF FOOD UTILIZATION BY HELIOTHIS ZEA (LEPIDOPTERA: NOCTUIDAE) FED ARTIFICIAL DIETS OR GREEN BEANS

Published online by Cambridge University Press:  31 May 2012

Allen C. Cohen
Affiliation:
Biological Control of Insects Laboratory, ARS-USDA, Tucson, Arizona 85719
Raymond Patana
Affiliation:
Biological Control of Insects Laboratory, ARS-USDA, Tucson, Arizona 85719

Abstract

Second-instar Heliothis zea (more than the 275th generation) larvae from a 16-year-old culture, were fed either green beans or artificial diet until they reached the pupal stage and then were compared to determine their relative fitness to the two diets. They proved at least as well adapted to beans as to artificial diet with regard to most parameters. Final larval weights were equal, as were pupal dry weights. Wet weights were higher in diet-fed than in bean-fed pupae. Dry food consumption was higher in diet-fed larvae than in bean-fed larvae, but the reverse was true of wet food consumption. Total food consumption by larvae was limited by food volume rather than weight or composition. The larval stage was shorter in diet-fed than in bean-fed larvae; and diet-fed larvae had better survival, higher body nitrogen, and body energy content. Oxygen consumption was lower in bean-fed than in diet-fed larvae. Efficiency of food utilization was higher for bean-fed than for diet-fed larvae both in terms of dry matter conversion and energy conversion. Nitrogen utilization efficiencies were the same for both diets.

Résumé

Des larves de deuxième stade de Heliothis zea maintenues en culture depuis 16 ans (au moins 275 générations) ont été nourries soit de fèves vertes, soit d'un régime artificiel, et ce jusqu'au stade pupal alors qu'elles ont été comparées afin de déterminer leur adaptation relative aux deux diètes. L'insecte est apparu également bien adapté aux fèves et au régime artificiel pour la plupart des paramètres. Les poids atteints par les larves étaient les mêmes, de même que les poids secs des pupes. Le poids frais des pupes était plus élevé chez les individus nourris du régime que chez ceux nourris de fèves. La consommation de matière sèche s'est avérée plus élevée pour les larves nourries de fèves, à l'inverse de la consommation exprimée en poids frais. La consommation totale de nourriture par les larves est apparue limitée par le volume de la nourriture plutôt que par son poids ou sa composition. Le développement larvaire a été plus court chez les larves nourries du régime que chez celles nourries de fèves; les larves nourries du régime ont aussi montré une meilleure survie et une teneur corporelle en azote et en énergie plus élevées. La consommation d'oxygène des larves nourries de fèves était plus faible que chez celles nourries du régime. L'efficacité d'utilisation de la nourriture était plus élevée chez les larves nourries de fèves que chez celles nourries du régime, aussi bien pour la conversion de matière sèche que pour la consommation d'énergie. Les efficacités d'utilisation de l'azote étaient similaires pour les deux diètes.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beck, S. D. and Reese, J. C.. 1976. Insect-plant interactions: nutrition and metabolism. pp. 41–92 in Wallace, J. W. and Mansell, R. L. (Eds.), Biochemical Interaction between Plants and Insects. Plenum Press, N.Y.425 pp.Google Scholar
Brewer, F. D. and King, E. G.. 1979. Consumption and utilization of soyflour-wheatgerm diets by Heliothis spp. Ann. ent. Soc. Am. 72: 415417.CrossRefGoogle Scholar
Cohen, A. C. 1983. A simple, rapid, and highly sensitive method of quantification of uric acid, hypoxanthine, and xanthine by HPLC. Experientia 39: 435436.CrossRefGoogle Scholar
De Groot, A. P. 1953. Protein and amino acid requirements of the honeybee. Physiologia Compara et Oecologia III 197285.Google Scholar
Fye, R. E. and McAda, W. C.. 1972. Laboratory studies on the development longevity and fecundity of six lepidopteran pests of cotton in Arizona. U.S. Dep. Agric. Prod. Res. Rep. 1454.Google Scholar
Patana, R. 1969. Rearing cotton insects in the laboratory. U.S. Dep. Agric. Prod. Res. Rep. 108.Google Scholar
Rodriguez, J. G. 1972. Insect and Mite Nutrition. North Holland Publishing, Amsterdam. 702 pp.Google Scholar
Schroeder, L. A. 1976. Energy, matter and nitrogen utilization by the larvae of the monarch butterfly Danaus plexippus. Oikos 27: 259264.CrossRefGoogle Scholar
Scriber, J. M. and Slansky, F. Jr., 1981. The nutritional ecology of immature insects. A. Rev. Ent. 26: 183211.CrossRefGoogle Scholar
Shaver, T. N. et al. 1970. Food utilization, ingestion, and growth of larvae of the bollworm and tobacco budworm on diets containing gossypol. J. econ. Ent. 63: 15441546.CrossRefGoogle Scholar
Singh, P. 1977. Artificial Diets for Insects, Mites and Spiders. Plenum, N.Y.594 pp.CrossRefGoogle Scholar
Slansky, F. Jr. and Feeny, P.. 1977. Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated plants. Ecol. Monogr. 47: 209228.CrossRefGoogle Scholar
Umbreit, W. W. et al. 1972. Manometric and biochemical techniques. Burgess, Minneapolis. 387 pp.Google Scholar
Waldbauer, G. P. 1968. The consumption and utilization of food by insects. Adv. Insect Physiol., Vol. 5, pp. 229288.CrossRefGoogle Scholar
Wiegert, R. G. and Petersen, C. E.. 1983. Energy transfer in insects. A. Rev. Ent. 28: 455486.CrossRefGoogle Scholar
Wightman, J. A. and Rogers, V. M.. 1978. Growth, energy, and nitrogen budgets and efficiencies of the growing larvae of Megachile pacifica (Panzer) (Hymenoptera: Megachilidae). Oecologia 36: 245257.CrossRefGoogle ScholarPubMed
Woodring, J. P. et al. 1979. Food utilization and metabolic efficiency in larval and adult house crickets. J. Insect Physiol. 25: 903912.CrossRefGoogle Scholar