Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T05:37:03.972Z Has data issue: false hasContentIssue false

Efficacy of Piper nigrum (Piperaceae) extract for control of insect defoliators of forest and ornamental trees

Published online by Cambridge University Press:  02 April 2012

I.M. Scott*
Affiliation:
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
B.V. Helson
Affiliation:
Canadian Forestry Service, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada P6A 2E5
G.M. Strunz
Affiliation:
Canadian Forestry Service, Natural Resources Canada, Fredericton, New Brunswick, Canada E3B 5P7
H. Finlay
Affiliation:
University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6E2
P.E. Sánchez-Vindas
Affiliation:
Herbarium, Universidad Nacional, Heredia 3000, Costa Rica
L. Poveda
Affiliation:
Herbarium, Universidad Nacional, Heredia 3000, Costa Rica
D.B. Lyons
Affiliation:
Canadian Forestry Service, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada P6A 2E5
B.J.R. Philogène
Affiliation:
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
J.T. Arnason
Affiliation:
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
*
2 Correspondence author (e-mail: [email protected]).
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The acute toxicities of an extract obtained from a plant within the Piperaceae family and related synthetic analogues were tested against four common Canadian forest pest insects. The acute toxicity of the extract from black pepper, Piper nigrum L., was assessed after 1, 24, and 72 h by the percent larval mortality. The 24 h LC50 estimates for the P. nigrum extract were (in order of decreasing sensitivity) 0.012% for the introduced pine sawfly, Diprion similis (Hartig) (Hymenoptera: Diprionidae), 0.053% for the forest tent caterpillar, Malacosoma disstria Hubner (Lepidoptera: Lasiocampidae), 0.282% for the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), and 0.998% for the spruce budworm, Choristoneura fumiferana (Clemens) (Lepidoptera: Torticidae). There was no significant increase in mortality after 72 h. Seventy percent of L. dispar larvae dropped off or moved from branches within 1 h of application of 0.2% P. nigrum extract, indicating that these compounds have a repellent effect. Pipercide and nor-pipercide were more toxic to L. dispar and M. disstria larvae than piperolein A and a P. sarmentosum Roxb. amide 72 h after either oral or topical administration of these compounds. Toxic effects of piperamides were more pronounced by oral ingestion. Ninety percent mortality of L. dispar larvae occurred following an oral dose of 5 µg pipercide in diet, whereas mortality was only 40% following topical treatment at 5 µg pipercide/insect. Whole Piper extracts might be useful for the control of sawflies and tent caterpillars in small-scale applications, based on the demonstrated efficacy and reduced risk potential.

Résumé

Nous avons évalué la toxicité aiguë d'extraits d'une plante de la famille des Piperaceae et d'analogues synthétiques apparentés chez quatre espèces communes d'insectes ravageurs des forêts canadiennes. Nous avons déterminé la toxicité aiguë d'extraits du poivrier noir, Piper nigrum L., après 1, 24 et 72 h d'après le pourcentage de mortalité des larves. Les valeurs estimées de LC50 après 24 h pour les extraits de P. nigrum sont par ordre de sensibilité décroissante, 0,012 % chez le diprion importé du pin, Diprion similis (Hartig) (Hymenoptera : Diprionidae), 0,053 % chez la livrée des forêts, Malacosoma disstria Hubner (Lepidoptera : Lasiocampidae), 0,282 % chez la spongieuse, Lymantria dispar (L.) (Lepidoptera : Lymantriidae) et 0,998 % chez la tordeuse des bourgeons de l'épinette, Choristoneura fumiferana (Clemens) (Lepidoptera : Tortricidae). Il n'y a pas d'augmentation significative de la mortalité après 72 h. En moins d'une heure après le traitement, 70 % des larves de L. dispar se sont laissées choir ou ont quitté les branches après l'application d'un extrait de 0,2 % de P. nigrum, ce qui indique que ces composés ont un effet répulsif. Soixante-douze h après le traitement, le pipercide et le nor-pipercide sont plus toxiques pour les larves de L. dispar et de M. disstria que la pipéroléine A et un amide de P. sarmentosum Roxb. lors d'administrations orales ou topiques de ces composés. Les effets toxiques des piperamides sont plus prononcés lors d'ingestion par la bouche. Il se produit une mortalité de 90 % chez les larves de L. dispar après une dose orale de 5 µg de pipercide dans la ration alimentaire; par comparaison, la mortalité est de 40 % lors d'une administration topique de l'ordre de 5 µg de pipercide/insecte. Compte tenu de l'efficacité démontrée et du risque potentiel réduit des extraits entiers de Piper, ceux-ci pourraient s'avérer utiles pour la lutte contre les mouches-à-scie et les chenilles-à-tente pour des administrations à petite échelle.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

References

Addy, N.D. 1969. Rearing the forest tent caterpillar on an artificial diet. Journal of Economic Entomology, 62: 270271.CrossRefGoogle Scholar
Bell, R.A., Owens, C.D., Shapiro, M., and Tardif, J.R. 1981. Development of mass rearing technology. In The gypsy moth: research toward integrated pest management. Forest Service, Science and Education Agency, Animal and Health Inspection Service, Technical Bulletin 1584. Edited by Doane, C.C. and McManus, M.L.. US Department of Agriculture, Washington, D.C. pp. 599655.Google Scholar
Bernard, C.B., Krishnamurty, H.G., Chauret, D., Durst, T., Philogène, B.J.R., Sanchez-Vindas, P., Hasbun, C., Poveda, L., San Roman, L., and Arnason, J.T. 1995. Insecticidal defenses of Piperaceae from the neotropics. Journal of Chemical Ecology, 21: 801814.CrossRefGoogle ScholarPubMed
Eidt, D.C., Ernst, W.R., and Holmes, S.B. 1995. Impacts of forest aerial spray programs on aquatic ecosystems. In Forest insect pests in Canada. Edited by Armstrong, J.A. and Ives, W.G.H.. Natural Resources Canada, Canadian Forest Service, Science and Sustainable Development Directorate, Ottawa, Ontario. pp. 619626.Google Scholar
Gbewonyo, W.S.K., Candy, D.J., and Anderson, M. 1993. Structure-activity relationships of insecticidal amides from Piper guineense root. Pesticide Science, 37: 5766.CrossRefGoogle Scholar
Helson, B.V., and Nigam, P.C. 1995. Neurotoxic insecticides. In Forest insect pests in Canada. Edited by Armstrong, J.A. and Ives, W.G.H.. Natural Resources Canada, Canadian Forest Service, Science and Sustainable Development Directorate, Ottawa, Ontario. pp. 359371.Google Scholar
Helson, B.V., Kaupp, W., Ceccarelli, A., and Arnason, J.T. 1996. Variation in susceptibility of tree-feeding insect species to photoactivated thiophene insecticides. Journal of Economic Entomology, 89: 820825.CrossRefGoogle Scholar
Helson, B.V., Lyons, D.B., Wanner, K.W., and Scarr, T.A. 2001. Control of conifer defoliators with neem-based systemic bioinsecticides using a novel injection device. The Canadian Entomologist, 133: 729744.CrossRefGoogle Scholar
Howse, G.M. 1995. Forest insect pests in the Ontario region. In Forest insect pests in Canada. Edited by Armstrong, J.A. and Ives, W.G.H.. Natural Resources Canada, Canadian Forest Service, Science and Sustainable Development Directorate, Ottawa, Ontario. pp. 4157.Google Scholar
Hubert, J.J., and Carter, E.M. 1990 a. PROBIT: a program in PASCAL for univariate probit analysis with exact confidence limits for LC50. Statistical Series 1990–, Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario.Google Scholar
Hubert, J.J., and Carter, E.M. 1990 b. COMLC50: a program in BASIC which tests for the equality of 2 or more LC50s. Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario.Google Scholar
Likhitwitayawuid, K., Ruangrungsi, N., Lange, G.L., and Decicco, C.P. 1987. Structural elucidation and synthesis of new components isolated from Piper sarmentosum. Tetrahedron, 43: 36893694.CrossRefGoogle Scholar
McMorran, A.A. 1965. A synthetic diet for the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). The Canadian Entomolologist, 97: 5862.CrossRefGoogle Scholar
Miyakado, M., Nakayama, I., Yoshioka, H., and Nakatani, N. 1979. The Piperaceae amides I: structure of pipercide, a new insecticidal amide from Piper nigrum L. Agricultural and Biological Chemistry, 43: 16091611.Google Scholar
Miyakado, M., Nakayama, I., and Yoshioka, H. 1980. Insecticidal joint action of pipercide and co-occurring compounds isolated from Piper nigrum L. Agricultural and Biological Chemistry, 44: 17011703.CrossRefGoogle Scholar
Parmar, V.S., Jain, S.C., Bisht, K.S., Jain, R., Taneja, P., Jha, A., Tyagi, O.D., Prasad, A.K., Wengel, J., Olsen, C.E., and Boll, P.M. 1997. Phytochemistry of the genus Piper. Phytochemistry, 46: 597673.CrossRefGoogle Scholar
Scott, I.M., Puniani, E., Durst, T., Phelps, D., Merali, S., Assabgui, R.A., Sánchez-Vindas, P., Poveda, L., Philogène, B.J.R., and Arnason, J.T. 2002. Insecticidal activity of Piper tuberculatum Jacq. extracts: synergistic interaction of piperamides. Agricultural and Forest Entomology, 4: 137144.CrossRefGoogle Scholar
Scott, I.M., Jensen, H., Scott, J.G., Isman, M.B., Arnason, J.T., and Philogène, B.J.R. 2003. Botanical insecticides for controlling agricultural pests: piperamides and the Colorado potato beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Archives of Insect Biochemistry and Physiology, 54: 212225.CrossRefGoogle ScholarPubMed
Scott, I.M., Jensen, H., Nicol, R., Lesage, L., Bradbury, R., Sánchez-Vindas, P., Poveda, L., Arnason, J.T., and Philogène, B.J.R. 2004. Efficacy of Piper (Piperaceae) extracts for control of common home and garden insect pests. Journal of Economic Entomology, 97: 13901403.CrossRefGoogle ScholarPubMed
Scott, I.M., Puniani, E., Jensen, H., Livesey, J.F., Poveda, L., Sánchez-Vindaz, P., Durst, T., and Arnason, J.T. 2005. Analysis of Piperaceae germplasm by HPLC and LCMS: a method for isolating and identifying unsaturated amides from Piper spp. extracts. Journal of Agricultural and Food Chemistry, 53: 19071913.CrossRefGoogle ScholarPubMed
Singh, P., and Moore, R.F. 1985. Handbook of insect rearing. Vol. II. Elsevier Science Publishers, Amsterdam, the Netherlands.Google Scholar
Strunz, G.M. 2000. Unsaturated amides from Piper species (Piperaceae). In Studies in natural products chemistry. Vol. 24. Edited by Atta-ur-Rahman, . Elsevier, New York. pp. 683738.Google Scholar
Strunz, G.M., and Finlay, H. 1994. Concise, efficient new synthesis of pipercide, an insecticidal unsaturated amide from Piper nigrum, and related compounds. Tetrahedron, 50: 1111311122.CrossRefGoogle Scholar
Strunz, G.M., and Finlay, H. 1995. Synthesis of sarmentosine, an amide alkaloid from Piper sarmentosum (Piperaceae). Phytochemistry, 39: 731733.CrossRefGoogle Scholar
Strunz, G.M., and Finlay, H. 1996. Expedient synthesis of unsaturated amide alkaloids from Piper spp: exploring the scope of recent methodology. Canadian Journal of Chemistry, 74: 419432.CrossRefGoogle Scholar
Systat Software Inc. 1999. SYSTAT®: statistics. Version 9.0 [computer program]. Systat Software Inc., Richmond, California.Google Scholar
Systat Software Inc. 2004. SYSTAT®: statistics. Version 11 [computer program]. Systat Software Inc., Richmond, California.Google Scholar
Tharp, C.I., Johnson, G.D., and Onsager, J.A. 2000. Laboratory and field evaluations of imidacloprid against Melanoplus sanguinipes (Orthoptera: Acrididae) on small grains. Journal of Economic Entomology, 93: 293299.CrossRefGoogle ScholarPubMed
Tripathi, A.K., Jain, D.C., and Kumar, S. 1996. Secondary metabolites and their biological and medicinal activities of Piper species plants. Journal of Medicinal and Aromatic Plant Sciences, 18: 302321.Google Scholar