Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T10:55:48.688Z Has data issue: false hasContentIssue false

EFFICACY OF FORAY 48B (BACILLUS THURINGIENSIS BERLINER) APPLICATIONS AGAINST THE SPRUCE BUDWORM, CHORISTONEURA FUMIFERANA (CLEMENS) (LEPIDOPTERA: TORTRICIDAE), TIMED FOR PHENOLOGICAL DEVELOPMENT OF BALSAM FIR AND BLACK SPRUCE

Published online by Cambridge University Press:  31 May 2012

Beresford L. Cadogan
Affiliation:
Forestry Canada, Forest Pest Management Institute, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
Roger D. Scharbach
Affiliation:
Forestry Canada, Forest Pest Management Institute, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The insecticide Foray 48B (Bacillus thuringiensis var. kurstaki Berliner) was applied undiluted at 30 BIU per ha to control spruce budworm, Choristoneura fumiferana (Clem.), in a mixed boreal forest stand of balsam fir, Abies balsamea (L.) Mill., and black spruce, Picea mariana (Mill.) B.S.P. When the treatment was timed to coincide with the early flushing of balsam fir shoots, the corrected budworm population reductions were 74 and 52% on balsam fir and black spruce, respectively. This treatment resulted in 19 and 8% defoliation on the two respective species. When the insecticide application was timed later to coincide with the late flushing of black spruce shoots the corrected population reductions were 93% on balsam fir and 72% on black spruce. Defoliation of the two species was 29 and 10% respectively, following this treatment. Larval survival on both species after the spray timed for black spruce (0.8 and 2.2 larvae per 45-cm branch on balsam fir and black spruce, respectively) was significantly less (P = 0.05) than that observed after the spray timed for balsam fir (4.6 and 4.2 larvae per 45-cm branch on the respective host species).The data indicate that the spray timed to correspond with the flushing of black spruce was generally more efficacious than the spray timed to impact on newly flushed balsam fir; nevertheless, the results raise the question as to how B. thuringiensis insecticides impact on early-instar budworm larvae when there is no preferred current year foliage on which the insects can feed.

Résumé

L’insecticide Foray 48B (Bacillus thuringiensis var. kurstaki Berliner) a été appliqué sous forme non diluée, à raison de 30 BIU par hectare, dans le but d’assurer le contrôle de la Tordeuse des bourgeons de l’épinette, Choristoneura fumiferana (Clem.), dans une forêt boréale mixte de Sapins baumiers, Abies balsamea (L.) Mill, et d’Épinettes noires, Picea mariana (Mill.) B.S.P. Lorsque le traitement était réglé pour coïncider avec l’apparition des premières pousses de sapin, la réduction corrigée de la population de tordeuses s’est avérée de 74% dans le cas du sapin et de 52% dans le cas de l’épinette. Après ce traitement, la défoliation a été évaluée à 19% chez la première espèce et à 8% chez l’autre. Lorsque le traitement était réglé pour coïncider avec l’apparition tardive des pousses d’épinette, les réductions corrigées de la population ont été évaluées à 93% sur les sapins et à 72% sur les épinettes. La défoliation a été estimée à 29% sur le sapin et à 10% sur l’épinette après ce traitement. La survie des larves sur les deux espèces d’arbres après un traitement réglé en fonction de l’Épinette noire (0,8 larve par 45 cm de branche de sapin et 2,2 larves par 45 cm de branche d’épinette) était significativement moins élevée (P = 0,05) que la survie observée après un traitement réglé en fonction du Sapin baumier (4,6 et 4,2 larves par 45 cm de branche, respectivement).Les données indiquent donc qu’un arrosage réglé pour correspondre à l’apparition des pousses d’Épinette noire est généralement plus efficace qu’un arrosage réglé en fonction des nouvelles pousses du Sapin baumier; néanmoins, ces résultats soulèvent un autre problème, à savoir comment les insecticides à base de B. thuringiensis affectent-ils les jeunes larves de la tordeuse en l’absence de leur nourriture préférée, le feuillage de l’année en cours?

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1993

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265267.CrossRefGoogle Scholar
Blais, J.R. 1957. Some relationships of the spruce budworm, Choristoneura fumiferana (Clem.), to black spruce, Picea mariana (Moench) Voss. Forestry Chronicle 33: 364372.CrossRefGoogle Scholar
Cadogan, B.L. 1987. Experimental aerial application of Matacil flowable insecticide to control spruce budworm [Lepidoptera: Tortricidae]. Crop Protection 6: 130135.CrossRefGoogle Scholar
Cadogan, B.L., and Zylstra, B.F.. 1984. An apparatus and technique for sampling aerially applied sprays in conifers. Pesticide Science 15: 417423.CrossRefGoogle Scholar
Churcher, J. 1981. The utility of baskets fitted to pole pruners for the collection of spruce budworm larval samples. Environment Canada, Canadian Forestry Service Research Notes 1(4): 3132.Google Scholar
Dixon, W.J. (Chief ed.). 1983. BMDP Statistical Software. University of California Press, Berkeley, CA. 734 pp.Google Scholar
Fettes, J.J. 1950. Investigations of Sampling Techniques for Population Studies of the Spruce Budworm on Balsam Fir in Ontario. Forest Insect Laboratory, Sault Ste. Marie, Annual Technical Report 4: 163401.Google Scholar
Greenbank, D.O. 1963. Staminate flowers and the spruce budworm. pp. 202218in Morris, R.F. (Ed.), The Dynamics of Epidemic Spruce Budworm Populations. Memoirs of the Entomological Society of Canada 31.Google Scholar
Haliburton, W. 1978. A Comparison of Empirical Equations used to Approximate the Drop/Stain Diameter Relationship of a Volatile Oil-based Spray Fluid on Kromekote Paper. Canadian Forestry Service, Forest Pest Management Institute Information Report FPM–X–8: 16 pp.Google Scholar
Martineau, R., and Benoit, P.. 1973. A sampling technique for estimating numerical trends in larval populations of insect defoliators on conifers. II. Phytoprotection 54: 2331.Google Scholar
Rose, A.H., and Lindquist, O.H.. 1977. Insects of Eastern Spruces, Fir and Hemlock. Department of the Environment, Canadian Forest Service, Forestry Technical Report 23: 159 pp.Google Scholar
Sanders, C.J. 1980. A Summary of Current Techniques used for Sampling Spruce Budworm Populations and Estimating Defoliation in Eastern Canada. Environment Canada, Canadian Forestry Service Information Report 0–X–306: 33 pp.Google Scholar
Sundaram, K.M.S., and Sundaram, A.. 1992. An insect bioassay method to determine persistence of Bacillus thuringiensis var. kurstaki (Btk) protein in oak foliage, following application of a commercial formulation under field & laboratory conditions. Journal of Environmental Science and Health B27(1): 73112.CrossRefGoogle Scholar
Varty, I.W., and Nigam, P.C.. 1985. Spray technology — the biological interface. p. 440in Sanders, C.J. et al. , (Eds.), Recent Advances in Spruce Budworm Research. Proceedings CANUSA Spruce Budworm Symposium, 16–20 Sept. 1984, Bangor, Maine. Canadian Forestry Service, Ottawa, Ontario.Google Scholar
Vincent, A.B. 1965. Black Spruce: A Review of its Silvics, Ecology and Silviculture. Department of Forestry, Canada Publ. 1100.Google Scholar
Volney, W.J.A. 1985. Comparative population biologies of North American Spruce budworms. pp. 7184in Sanders, C.J. et al. , (Eds.), Recent Advances in Spruce Budworm Research. Proceedings CANUSA Spruce Budworm Symposium, 16–20 Sept. 1984, Bangor, Maine. Canadian Forestry Service, Ottawa, Ontario.Google Scholar