Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T06:21:07.600Z Has data issue: false hasContentIssue false

EFFICACY OF AN ANTIAGGREGATION PHEROMONE FOR REDUCING DOUGLAS-FIR BEETLE, DENDROCTONUS PSEUDOTSUGAE HOPKINS (COLEOPTERA: SCOLYTIDAE), INFESTATION IN HIGH RISK STANDS1

Published online by Cambridge University Press:  31 May 2012

Darrell W. Ross
Affiliation:
Department of Forest Science, Oregon State University, Corvallis, Oregon, USA 97331
Gary E. Daterman
Affiliation:
USDA Forest Service, Pacific Northwest Research Station, 3200 Jefferson Way, Corvallis, Oregon, USA 97331

Abstract

The Douglas-fir beetle (Dendroctonus pseudotsugae) antiaggregation pheromone, 3-methylcyclohex-2-en-1-one (MCH), was applied to stands at high risk for infestation. The MCH was applied in a bubble capsule formulation to plots ranging from 2.1 to 2.6 ha in size at rates of 45–76 g/ha. Catches of Douglas-fir beetles in attractant-baited Lindgren funnel traps located at the plot centers were significantly lower on MCH-treated plots compared with untreated plots. In contrast, catches of the most abundant predator, Thanasimus undatulus (Say), were unaffected by the MCH treatment. The percentage of Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] trees ≥20 cm dbh that were mass attacked was significantly lower on treated plots (0.2%) compared with untreated plots (8.5%). MCH alone was effective in reducing the probability of Douglas-fir beetle infestations occurring in high risk stands.

Résumé

La phéromone anti-rassemblements du Dendroctone du Douglas (Dendroctonus pseudotsugae), la méthyl-3 cyclohexène-2 one-1 (MCH) a été utilisée dans des forêts très sensibles aux infestations. Le produit a été appliqué dans une capsule en bulle sur des parcelles de terrain de 2,1 à 2,6 ha de surface à raison de 45–76 g/ha. Les échantillons de coléoptères recueillis dans des pièges de Lindgren appâtés situés au centre ses parcelles, étaient significativement plus faibles dans les parcelles traitées que dans les parcelles non traitées. En revanche, le traitement au MCH n’a pas affecté le nombre de captures du prédateur le plus abondant, Thanasimus undatulus (Say). Le pourcentage d’arbres infestés [Pseudotsuga menziesii (Mirb.) Franco] de plus de 20 cm de diamètre à hauteur de poitrine a été significativement plus faible dans les parcelles traitées (0,2%) que dans les parcelles non traitées (8,5%). La phéromone seule peut donc réduire efficacement la probabilité d’infestation par le Dendroctone du Douglas dans les forêts très sensibles.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Daterman, G.E. 1974. Synthetic Sex Pheromone for Detection Survey of European Pine Shoot Moth. U.S.D.A. Forest Service, Pacific Northwest Forest and Range Experiment Station, Research Paper PNW–180: 12 pp.Google Scholar
Furniss, M.M. 1965. Susceptibility of fire-injured Douglas-fir to bark beetle attack in southern Idaho. Journal of Forestry 63: 811.Google Scholar
Furniss, M.M., Clausen, R.W., Markin, G.P., McGregor, M.D., and Livingston, R.L.. 1981. Effectiveness of Douglas-fir Beetle Antiaggregative Pheromone Applied by Helicopter. U.S.D.A. Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report INT–101: 6 pp.Google Scholar
Furniss, M.M., Daterman, G.E., Kline, L.N., McGregor, M.D., Trostle, G.C., Pettinger, L.F., and Rudinsky, J.A.. 1974. Effectiveness of the Douglas-fir beetle antiaggregative pheromone methylcyclohexenone at three concentrations and spacings around felled host trees. The Canadian Entomologist 106: 381392.CrossRefGoogle Scholar
Furniss, M.M., Livingston, R.L., and McGregor, M.D.. 1981. Development of a stand susceptibility classification for Douglas-fir beetle. pp. 115–128 in Hedden, R.L., Barras, S.J., and Coster, J.E. (Tech. Coords.), Proceedings of the Symposium on Hazard-rating Systems in Forest Pest Management, July 31 – August 1, 1980, Athens, Georgia. U.S.D.A. Forest Service, Washington Office, General Technical Report WO–27: 169 pp.Google Scholar
Furniss, M.M., McGregor, M.D., Foiles, M.W., and Partridge, A.D.. 1979. Chronology and Characteristics of a Douglas-fir Beetle Outbreak in Northern Idaho. U.S.D.A. Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report INT–59: 19 pp.Google Scholar
Furniss, M.M., and Orr, P.W.. 1978. Douglas-fir Beetle. U.S.D.A. Forest Service, Forest Insect & Disease Leaflet 5: 4 pp.Google Scholar
Furniss, M.M., Young, J.W., McGregor, M.D., Livingston, R.L., and Hamel, D.R.. 1977. Effectiveness of controlled-release formulations of MCH for preventing Douglas-fir beetle (Coleoptera: Scolytidae) infestation in felled trees. The Canadian Entomologist 109: 10631069.CrossRefGoogle Scholar
Furniss, R.L., and Carolin, V.M.. 1977. Western Forest Insects. U.S.D.A. Forest Service Miscellaneous Publication 1339: 654 pp.Google Scholar
Johnson, N.E., and Belluschi, P.G.. 1969. Host-finding behavior of the Douglas-fir beetle. Journal of Forestry 67: 290295.Google Scholar
Knopf, J.A.E., and Pitman, G.B.. 1972. Aggregation pheromone for manipulation of the Douglas-fir beetle. Journal of Economic Entomology 65: 723726.CrossRefGoogle Scholar
Lejeune, R.R., McMullen, L.H., and Atkins, M.D.. 1961. The influence of logging on Douglas-fir beetle populations. Forestry Chronicle 37: 308314.CrossRefGoogle Scholar
Lindgren, B.S. 1983. A multiple funnel trap for scolytid beetles (Coleoptera). The Canadian Entomologist 115: 299302.CrossRefGoogle Scholar
Lindgren, B.S., McGregor, M.D., Oakes, R.D., and Meyer, H.E.. 1988. Effect of MCH and baited Lindgren traps on Douglas-fir beetle attacks on felled trees. Journal of Applied Entomology 105: 289294.CrossRefGoogle Scholar
McGregor, M.D., Furniss, M.M., Oakes, R.D., Gibson, K.E., and Meyer, H.E.. 1984. MCH pheromone for preventing Douglas-fir beetle infestation in windthrown trees. Journal of Forestry 82: 613616.Google Scholar
McMullen, L.H., and Atkins, M.D.. 1962. On the flight and host selection of the Douglas-fir beetle, Dendroctonus pseudotsugae Hopk. (Coleoptera: Scolytidae). The Canadian Entomologist 94: 13091325.CrossRefGoogle Scholar
Milliken, G.A., and Johnson, D.E.. 1984. Analysis of Messy Data Volume I: Designed Experiments. Van Nostrand Reinhold Co., New York, NY. 473 pp.Google Scholar
Patterson, S. 1992. Douglas-fir Beetle: Dealing with an Epidemic. pp. 73–76 in Murphy, D. (Comp.), Getting to the Future Through Silviculture — Workshop Proceedings. U.S.D.A. Forest Service, Intermountain Research Station, General Technical Report INT–291: 97 pp.Google Scholar
Pitman, G.B. 1973. Further observations on douglure in a Dendroctonus pseudotsugae management system. Environmental Entomology 2: 109112.CrossRefGoogle Scholar
Ringold, G.B., Gravelle, P.J., Miller, D., Furniss, M.M., and McGregor, M.D.. 1975. Characteristics of Douglas-fir Beetle Infestation in Northern Idaho Resulting from Treatment with Douglure. U.S.D.A. Forest Service, Intermountain Forest and Range Experiment Station, Research Note INT–189: 10 pp.Google Scholar
Ross, D.W., and Daterman, G.E.. 1994. Reduction of Douglas-fir beetle infestation of high risk stands by antiaggregation and aggregation pheromones. Canadian Journal of Forest Research 24: 21842190.CrossRefGoogle Scholar
Ross, D.W. 1995. Pheromone-based strategies for managing the Douglas-fir beetle on a landscape scale. In Proceedings, IUFRO Working Parties S2.07-05 and S2.07-06, Behavior, Population Dynamics and Control of Forest Insects, Maui, Hawaii, 611 February 1994. In press.Google Scholar
Rudinsky, J.A. 1966. Host selection and invasion by the Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, in coastal Douglas-fir forests. The Canadian Entomologist 98: 98111.CrossRefGoogle Scholar
Rudinsky, J.A., Furniss, M.M., Kline, L.N., and Schmitz, R.F.. 1972. Attraction and repression of Dendroctonus pseudotsugae (Coleoptera: Scolytidae) by three synthetic pheromones in traps in Oregon and Idaho. The Canadian Entomologist 104: 815822.CrossRefGoogle Scholar
SAS Institute Inc. 1985. SAS/STAT Guide for Personal Computers, Version 6 Edition. SAS Institute Inc., Cary, NC.Google Scholar
Schmitz, R.F. 1978. Taxonomy and Bionomics of the North American Species of Thanasimus Latreille (Coleoptera: Cleridae). Ph.D. thesis, University of Idaho, Moscow, ID. 121 pp.Google Scholar
Steel, R.G.D., and Torrie, J.H.. 1980. Principles and Procedures of Statistics: A Biometrical Approach. McGraw-Hill, Inc., New York, NY. 633 pp.Google Scholar
Thier, R.W., and Weatherby, J.C.. 1991. Mortality of Douglas-fir after two semiochemical baiting treatments for Douglas-fir beetle (Coleoptera: Scolytidae). Journal of Economic Entomology 84: 962964.CrossRefGoogle Scholar
Wright, L.C., Berryman, A.A., and Wickman, B.E.. 1984. Abundance of the fir engraver, Scolytus ventralis, and the Douglas-fir beetle, Dendroctonus pseudotsugae, following tree defoliation by the Douglas-fir tussock moth, Orgyia pseudotsugata. The Canadian Entomologist 116: 293305.CrossRefGoogle Scholar