Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T21:04:00.490Z Has data issue: false hasContentIssue false

The effects of urbanization on ant assemblages (Hymenoptera: Formicidae) associated with the Molson Nature Reserve, Quebec

Published online by Cambridge University Press:  02 April 2012

Jean-Philippe Lessard
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
Christopher M. Buddle*
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
*
1Corresponding author (e-mail: [email protected]).

Abstract

Urbanization causes the fragmentation of natural habitats into isolated patches surrounded by anthropogenic habitats. Fragment size and the intensity of human disturbance have been shown to affect both composition and diversity of arthropod communities, but most groups have been understudied. We investigated effects of urbanization on ant assemblages (Hymenoptera: Formicidae) in and around the Molson Reserve, a preserved maple-beech forest surrounded by residential properties near Montréal, Quebec. We studied how local ant assemblages differed in terms of composition, abundance, and species richness, depending on whether they were situated in the interior forest, in adjacent residential backyards, or at the edge between these two habitats. We also compared an intact forest interior with a younger and moderately disturbed forest (“buffer zone”) between the urban matrix and the interior forest. Few differences were detected between the buffer zone and the intact forest interior. Extrapolated estimates of species richness suggest that it is lowest in the forest interior and highest in urban zones. Community composition, as investigated with ordination analysis, revealed a clear difference between the fauna of urban sites and the fauna of edges and forest interiors, and analyzing the relative abundance of ants showed residential backyards to contain the most ants. Urban assemblages were characterized by several competitively dominant species, including one introduced or “tramp” species. The occurrence of aggressive and dominant species in urban sites and at the edges of the Molson Reserve could potentially interfere with the dispersal and immigration of ground-dwelling arthropods and negatively affect local diversity or community composition in isolated forest reserves in urban centres.

Résumé

L'urbanisation fragmente les habitats naturels et les isole au sein d'espaces habités et modifiés par l'homme. Des études menées à l'échelle régionale suggèrent que la taille des îlots forestiers, ainsi que les perturbations humaines, affectent leur composition et la diversité des communautés d'arthropodes y habitant. Cependant, pour de nombreux autres groupes d'arthropodes ces effets n'ont pas encore été adéquatement testés. Nous avons exploré les effets de l'urbanisation sur les communautés de fourmis (Hymemoptera : Formicidae) à l'intérieur et aux alentours de réserves Molson, une érablière à hêtre adjacente à des propriétés résidentielles près de Montréal, Québec. Nous avons étudié comment l'assemblage des communautés de fourmis diffère en terme de composition et de richesse spécifique, en fonction de leur localisation, soit à l'intérieur de la forêt, de terrains résidentiels adjacents ou dans l'écotone séparant ces deux habitats. Nous avons aussi comparé le centre d'une forêt vierge avec celle d'une forêt plus jeune modérément perturbée qui tient le rôle d'un gradient plus traditionnel (« zone tampon ») entre la matrice urbaine et l'intérieur de la forêt. Bien que peu de différence ne fusse détectée entre la foret vierge et la zone tampon, l'extrapolation de la richesse spécifique suggère que l'intérieur de la forêt est dotée d'une richesse spécifique plus basse, tandis que la zone urbaine comprend une richesse spécifique plus élevé. Comparativement à l'intérieur et à la lisière des forêts, les fourmis sont plus fréquemment collectées dans les terrains résidentiels, et sont composées de plusieurs espèces dominatrices, incluant des espèces introduites ou vagabondes. L'occurrence d'espèces de fourmis agressives et dominantes dans les sites urbains et dans les lisières (écotones) de la réserve Molson pourrait potentiellement interférer avec la dispersion et l'immigration des arthropodes terrestres, et affecter négativement la diversité locale ou la composition des communautés au sein des réserves forestières isolées dans les centres urbains.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, L.E., and Agosti, D. 2000. Biodiversity studies, monitoring, and ants: an overview. In Ants: standard methods for measuring and monitoring biodiversity. Edited by Agosti, D., Majer, J.D., Alonso, L.E., and Schultz, T.R.. Smithsonian Institution Press, Washington, District of Columbia. pp. 18.Google Scholar
Andersen, A.N. 1997 a. Using ants as bioindicators: multiscale issues in ant community ecology. Conservation Ecology, 1: 117.Google Scholar
Andersen, A.N. 1997 b. Functional groups and patterns of organization in North American ant communities: a comparison with Australia. Journal of Biogeography, 24: 433460.CrossRefGoogle Scholar
Bestelmeyer, B.T. 2000. The trade-off between thermal tolerance and behavioural dominance in a subtropical South American ant community. Journal of Animal Ecology, 69: 9981009.Google Scholar
Bestelmeyer, B.T., Agosti, D., Alonso, L., Roberto, C., Brandao, F., Brown, W.L. et al. 2002. Field techniques for the study of ground-dwelling ants. In Ants: standard methods for measuring and monitoring biodiversity. Edited by Agosti, D., Majer, J.D., Alonso, L.E., and Schultz, T.R.. Smithsonian Institution Press, Washington, District of Columbia. pp. 122154.Google Scholar
Bolger, D.T., Suarez, A.V., Crooks, K.R., Morrison, S.A., and Case, T.J. 2000. Arthropods in urban habitat fragments in southern California: area, age, and edge effects. Ecological Applications, 10: 12301248.CrossRefGoogle Scholar
Carpintero, S., Reyes-López, J., and de Reyna, L.A. 2004. Impact of human dwellings on the distribution of the exotic Argentine ant: a case study in the Doñana National Park, Spain. Biological Conservation, 115(2): 279289.Google Scholar
Colwell, R.K. 2001. EstimateS: statistical estimation of species richness and shared species from samples. Version 6.0b1 Beta [computer program]. User's guide and application available from http://viceroy.eeb.uconn.edu/estimates [cited 2 June 2004].Google Scholar
Dauber, J., and Wolters, V. 2004. Edge effects on ant community structure and species richness in an agricultural landscape. Biodiversity and Conservation, 13: 901915.Google Scholar
Folgarait, P.J. 1998. Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiversity and Conservation, 7: 12211244.CrossRefGoogle Scholar
Forys, E.A., Allen, C.R., and Wojcik, D.P. 2002. Distribution of the red imported fire ant in the Lower Florida Keys: effects of human development and roads and spatial overlap with vulnerable rare species. Biological Conservation, 108: 2733.CrossRefGoogle Scholar
Fowler, H.G., Pereira-da-Silva, V., Forti, L.C., and Saes, N.B. 1986. Population dynamics of leaf-cutting ants: a brief review. In Fire ants and leaf-cutting ants: biology and management. Edited by Lofgren, C.S. and Meer, R.K. Vander. Westview Press, Boulder, Colorado. pp. 123145.Google Scholar
Francoeur, A. 1966. La faune myrmécologique de l'érablière à sucre (Aceretum saccharophori, Dansereau) de la région de Québec. Naturaliste Canadien (Quebec), 93: 443472.Google Scholar
Francoeur, A. 1973. Révision taxonomique des espèces néarctiques du groupe fusca, genre Formica (Formicidae : Hymenoptera). Memoires de la Societe Entomologique du Quebec, 3: 1316.Google Scholar
Gaugh, H.G. 1982. Multivariate analysis in community ecology. Cambridge University Press, New York.Google Scholar
Gibb, H., and Hochuli, D.F. 2002. Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages. Biological Conservation, 106: 91100.CrossRefGoogle Scholar
Gibb, H., and Hochuli, D.F. 2003. Colonisation by a dominant ant facilitated by anthropogenic disturbance: effects on an ant assemblage composition, biomass and resource use. Oikos, 103: 469478.CrossRefGoogle Scholar
Gotelli, N.J., and Arnett, A.E. 2000. Biogeographic effects of red fire ant invasion. Ecology Letters, 3: 257261.CrossRefGoogle Scholar
Gotelli, N., and Ellison, A.M. 2002. Biogeography at a regional scale: determinants of ant species density in New England bogs and forests. Ecology, 83: 16041609.Google Scholar
Halme, E., and Niemelä, J. 1993. Carabid beetles in fragments of coniferous forest. Annales Zoologici Fennici, 30: 1730.Google Scholar
Hart, A.G., and Ratnieks, F.L.W. 2002. Waste management in the leaf-cutting ant Atta colombica. Behavioral Ecology, 13: 224231.Google Scholar
Holldobler, B., and Wilson, E.O. 1990. The ants. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Kaspari, M., and Majer, J.D. 2000. Using ants to monitor environmental change. In Ants: standard methods for measuring and monitoring biodiversity. Edited by Agosti, D., Majer, J.D., Alonso, L.E., and Schultz, T.R.. Smithsonian Institution Press, Washington, District of Columbia. pp. 8998.Google Scholar
King, T.G., and Phillips, S.A. Jr., 1992. Destruction of young colonies of the red imported fire ant (Solenopsis invicta) by the pavement ant (Hymenoptera: Formicidae). Entomological News, 103: 7277.Google Scholar
Kim, H.H. 1992. Urban heat-island. International Journal of Remote Sensing, 13: 23192336.CrossRefGoogle Scholar
Longino, J.T. 2002. What to do with the data. In Ants: standard methods for measuring and monitoring biodiversity. Edited by Agosti, D., Majer, J.D., Alonso, L.E., and Schultz, T.R.. Smithsonian Institution Press, Washington, District of Columbia. pp. 186203.Google Scholar
Magurran, A.E. 2004. Measuring biological diversity. Blackwell Publishing, Madlen, Massachusetts.Google Scholar
Matson, P. 1990. The use of urban gradients in ecological studies. Ecology, 71: 1231.CrossRefGoogle Scholar
McCune, B., and Mefford, M.J. 1999. PC-Ord: multivariate analysis of ecological data. MjM Software Design, Gleneden Beach, Oregon.Google Scholar
McGlynn, T.P. 1999. The worldwide transfer of ants: geographical distribution and ecological invasions. Journal of Biogeography, 52: 257274.Google Scholar
McIntyre, N.E., Rango, J., Fagan, W.F., and Faeth, S.H. 2001. Ground arthropod community structure in a heterogeneous urban environment. Landscape and Urban Planning, 52: 257274.CrossRefGoogle Scholar
Niemelä, J., Kotze, J., Ashworth, A., Brandmayr, P., Desender, K., New, T. et al. 2000. The search for common anthropogenic impacts on biodiversity: a global network. Journal of Insect Conservation, 4: 39.Google Scholar
Niemelä, J., Kotze, D.J., Venn, S., Penev, L., Stoyanov, I., Spence, J. et al. 2002. Carabid beetle assemblages (Coleoptera: Carabidae) across urban-rural gradients: an international comparison. Landscape Ecology, 17: 387401.CrossRefGoogle Scholar
Sanders, N.J., Gotelli, N.J., Heller, N.E., and Gordon, D.M. 2003. Community disassembly by an invasive species. Proceedings of the National Academy of Sciences of the United States of America, 100: 24742477.Google Scholar
Shik, J.Z., Francoeur, A., and Buddle, C.M. 2005. The effect of human activity on ant species richness (Hymenoptera: Formicidae) at the Mont St. Hilaire Biosphere Reserve (Québec). Canadian Field-Naturalist. In press.Google Scholar
Staples, S. 2004. Exotic ants infest tourist hot spots for beachhead in Canada. Montreal Gazette, 13 April 2004, Sect. A, pp. 1 and 4.Google Scholar
Suarez, A.V., Bolger, D.T., and Case, T.J. 1998. The effects of fragmentation and invasion on the native ant community in coastal southern California. Ecology, 79: 20412056.CrossRefGoogle Scholar