Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T14:09:00.908Z Has data issue: false hasContentIssue false

Effects of temperature acclimation and age on movement of Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) adults in response to temperature gradients

Published online by Cambridge University Press:  02 April 2012

Fuji Jian
Affiliation:
Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada R3T 5V6
Digvir S. Jayas*
Affiliation:
Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada R3T 5V6
Noel D.G. White
Affiliation:
Agriculture and Agri-Food Canada, Cereal Research Centre, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
*
1Corresponding author (e-mail: [email protected]).

Abstract

Adult Cryptolestes ferrugineus (Stephens) were reared at 30 °C or acclimated to 15, 25, or 35 °C for different periods (2 days or 1, 2, or 5 weeks). Populations 1 day old, 1, 5, 10, or 20 weeks old, or of mixed age were held in 10 cm × 10 cm × 100 cm wheat columns (14.5% ± 0.2% moisture content) with a temperature gradient (10 °C/m, 25–35 °C) or a constant temperature (25 or 30 °C) for 1, 6, or 12 days; movement and distribution were then determined. Acclimation to 25 °C for a short time (less than 2 days) did not influence adults' response to temperature in the wheat column. Adults acclimated to 15 and 35 °C responded differently to temperature in the wheat column, preferring temperatures above 30 and 35 °C, respectively. Increasing the duration of the acclimation to 15 or 35 °C resulted in higher aggregation. Acclimation temperature might be more important than exposure time for influencing insect behaviour. During their movement in the wheat columns, adults were also acclimated to the tested temperatures, and they did not always stay in a warmer area if the "cold" area was warmer than 25 °C. Adults that were 1 day old had a lower response (i.e., less movement) to temperature gradients than the older insects. Among the older insects, the response to temperature gradients did not decrease with increasing age, even at 20 weeks.

Résumé

Nous avons élevé des adultes de Cryptolestes ferrugineus (Stephens) à 30 °C, et en avons acclimatés d'autres à 15, 25 et 35 °C pour des périodes de 2 jours et de 1, 2 et 5 semaines. Nous avons gardé des populations âgées de 1 jour et de 1, 5, 10 et 20 semaines et des populations d'âges mixtes dans des colonnes de blé de 10 cm × 10 cm × 100 cm (14,5 % ± 0,2 % d'humidité) avec un gradient de température (10 °C/m, 25–35 °C) ou avec une température constante (25 ou 30 °C) pendant 1, 6 ou 12 jours; nous avons noté leurs déplacements et leur répartition. Une acclimatation à 25 °C pour une courte période (moins de 2 jours) n'affecte pas la réaction des adultes à la température dans la colonne de blé. Les adultes acclimatés à 15 et 35 °C réagissent différemment à la température dans la colonne de blé, les premiers préférant les températures supérieures à 30 °C et les seconds les températures supérieures à 35 °C. Une prolongation de l'acclimatation à 15 ou à 35 °C provoque des distributions plus contagieuses. La température d'acclimatation peut être plus importante que la durée de l'acclimatation pour expliquer le comportement des insectes. Pendant leurs déplacements dans la colonne de blé, les adultes s'acclimatent aussi aux températures expérimentales; ils ne demeurent pas toujours dans la zone plus chaude, si la zone plus « froide » a une température supérieure à 25 °C. Les adultes âgés de 1 jour ont une réaction moins forte (i.e., moins de déplacements) aux gradients thermiques que les insectes plus vieux. Chez les insectes plus âgés, la réaction aux gradients thermiques ne diminue pas avec l'âge, même à 20 semaines.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Society of Agricultural Engineers. 2002. ASAE standards 2002. St. Joseph, Michigan.Google Scholar
Flinn, P.W., and Hagstrum, D.W. 1998. Distribution of Cryptolestes ferrugineus (Coleoptera: Cucujidae) in response to temperature gradients in stored wheat. Journal of Stored Products Research, 34: 107112.CrossRefGoogle Scholar
Hagstrum, D.W. 1989. Infestation by Cryptolestes ferrugineus (Coleoptera: Cucujidae) of newly harvested wheat stored on three Kansas farms. Journal of Economic Entomology, 82: 655661.CrossRefGoogle Scholar
Howe, R.W., and Lefkovitch, L.P. 1957. The distribution of the storage species of Cryptolestes (Col.: Cucujidae). Bulletin of Entomological Research, 48: 795809.CrossRefGoogle Scholar
Jayas, D.S. 1995. Mathematical modelling of heat, moisture, and gas transfer in stored-grain ecosystems. In Stored-grain ecosystems. Edited by Jayas, D.S., White, N.D.G., and Muir, W.E.. Marcel Decker, Inc., New York. pp. 527567.Google Scholar
Jayas, D.S., Alagusundaram, K., Shunmugam, G., Muir, W.E., and White, N.D.G. 1994. Simulated temperatures of stored grain bulks. Canadian Agricultural Engineering, 36: 239245.Google Scholar
Jian, F., Jayas, D.S., White, N.D.G., and Muir, W.E. 2002. Temperature and geotaxis preference by Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) adults in response to 5 °C/m temperature gradients at optimum and hot temperatures in stored wheat and their mortality at high temperatures. Environmental Entomology, 31: 816826.CrossRefGoogle Scholar
Jian, F., Jayas, D.S., and White, N.D.G. 2003. Movement of adult rusty grain beetles, Cryptolestes ferrugineus (Coleoptera: Cucujidae), in wheat in response to 5 °C/m temperature gradients at cool temperatures. Journal of Stored Products Research, 39: 87101.CrossRefGoogle Scholar
Jian, F., Jayas, D.S., and White, N.D.G. 2005. Movement and distribution of adult Cryptolestes ferrugineus (Coleoptera: Cucujidae) in stored wheat in response to temperature gradients, dockage, and moisture differences. Journal of Stored Products Research. In press.CrossRefGoogle Scholar
Loschiavo, S.R. 1985. Post-harvest grain temperature, moisture, and insect infestation in steel granaries in Manitoba. The Canadian Entomologist, 117: 714.CrossRefGoogle Scholar
Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution, 43: 223225.CrossRefGoogle ScholarPubMed
SAS Institute Inc. 1988. SAS user's guide. Release 6.03. SAS Institute Inc., Cary, North Carolina.Google Scholar
Sinha, R.N., and Wallace, H.A.H. 1966. Ecology of insect-induced hot spots in stored grain in western Canada. Researches on Population Ecology, 8: 107132.CrossRefGoogle Scholar
Surtees, G. 1963. Laboratory studies on dispersion behaviour of adult beetles in grain. III. Tribolium castaneum (Hbst.) (Coleoptera: Tenebrionidae) and Cryptolestes ferrugineus (Steph.) (Coleoptera: Cucujidae). Bulletin of Entomological Research, 54: 297306.CrossRefGoogle Scholar
White, N.D.G., and Bell, R.J. 1993. Effects of mating status, sex ratio, and population density on longevity and offspring production of Cryptolestes ferrugineus (Stephens) (Coleoptera: Cucujidae). Experimental Gerontology, 28: 617631.CrossRefGoogle ScholarPubMed