Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T04:32:20.590Z Has data issue: false hasContentIssue false

THE EFFECTS OF SWEETCLOVER SPECIES, CULTIVARS, AND NITRATE FERTILIZER ON FEEDING BY THE SWEETCLOVER WEEVIL, SITONA CYLINDRICOLLIS FÅHRAEUS (COLEOPTERA: CURCULIONIDAE)1

Published online by Cambridge University Press:  31 May 2012

Juliana J. Soroka
Affiliation:
Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
Alister D. Muir
Affiliation:
Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2

Abstract

Sweetclover, Melilotus Miller, was planted in a field near Saskatoon, Saskatchewan, to determine the effects of species and cultivars on early season feeding by the sweetclover weevil, Sitona cylindricollis. The wild annual species M. infesta Guss. was consumed less than were cultivars of M. alba (Desr.), which were generally consumed less than cultivars of M. officinalis (L.). The amount of feeding injury by the weevil among nine sweetclover entries was not significantly correlated with nitrate levels in cotyledons, unifoliolate, or first trifoliolate leaves. Weevils fed equally well on entries with high and low coumarin levels. Results from greenhouse cultivar trials generally paralleled those from the field. In an experiment in which different levels of ammonium nitrate fertilizer were broadcast prior to seeding of M. officinalis cultivar Norgold, levels of nitrate ion in the foliage were significantly correlated with fertilizer regime, but not with damage indices of the weevil. These experiments suggest that the nitrate ion in isolation is not the principal factor in the deterrence to sweetclover weevil feeding in M. infesta, and that elevating nitrate levels in sweetclover leaves would not confer resistance to this insect.

Résumé

Du mélilot, Mélilotus Miller, a été planté près de Saskatoon, Saskatchewan, afin de déterminer les effets de la nature de l’espèce et du cultivar sur l’alimentation du Charançon du mélilot, Sitona cylindricollis en début de saison. L’espèce indigène annuelle M. infesta Guss. est moins attaquée que les cultivars de M. alba (Desr.) qui sont eux-mêmes généralement moins attaqués que les cultivars de M. officinalis (L.). L’importance des dommages causés par l’alimentation du charançon sur neuf échantillons de mélilot n’était pas significativement reliée aux concentrations de nitrates dans les cotyles, ou dans les feuilles unifoliées ou les premières feuilles trifoliées. Les charançons se nourrissent tout autant sur les échantillons contenant des concentrations élevées ou faibles de coumarine. Les résultats obtenus en serre sur les cultivars correspondent à ceux obtenus à l’extérieur. Dans une expérience au cours de laquelle différentes concentrations de nitrate d’ammonium ont été vaporisées avant les semis du cultivar Norgold de M. officinalis, les concentrations d’ions nitrates dans le feuillage étaient significativement reliées au régime d’engrais utilisé, mais pas aux dommages causés par le charançon. Ces expériences semblent indiquer que l’ion nitrate seul n’est pas le principal facteur d’éloignement du charançon dans les champs de M. infesta et que l’utilisation de concentrations plus élevées de nitrates sur les feuilles de mélilots ne rendraient pas les plants plus résistants à l’insecte.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akeson, W.R., Beland, G.L., Haskins, F.A., and Gorz, H.J.. 1969. Influence of developmental stage of Melilotus infesta leaves on resistance to feeding by the sweetclover weevil. Crop Science 9: 667669.CrossRefGoogle Scholar
Akeson, W.R., Beland, G.L., and Manglitz, G.R.. 1969. Nitrate as a deterrent to feeding by the sweetclover weevil. Journal of Economic Entomology 62: 11691172.CrossRefGoogle Scholar
Akeson, W.R., Gorz, H.J., and Haskins, F.A.. 1969. Sweetclover weevil feeding stimulants: Isolation and identification of glucose, fructose, and sucrose. Crop Science 9: 810812.CrossRefGoogle Scholar
Akeson, W.R., Gorz, H.J., and Haskins, F.A. 1970. Sweetclover weevil feeding stimulants: Variation in levels of glucose, fructose, and sucrose in Melilotus leaves. Crop Science 10: 477479.CrossRefGoogle Scholar
Akeson, W.R., Gorz, H.J., Haskins, F.A., and Manglitz, G.R.. 1968. A water-soluble factor in Melilotus officinalis leaves which stimulates feeding by the adult sweetclover weevil. Journal of Economic Entomology 61: 11111112.CrossRefGoogle Scholar
Akeson, W.R., Haskins, F.A., and Gorz, H.J.. 1969. Sweetclover weevil feeding deterrent B. Isolation and identification. Science 163: 293294.CrossRefGoogle ScholarPubMed
Akeson, W.R., Haskins, F.A., Gorz, H.J., and Manglitz, G.R.. 1968. Water-soluble factors in Melilotus leaves which influence feeding by the sweetclover weevil. Crop Science 8: 574576.CrossRefGoogle Scholar
Akeson, W.R., Haskins, F.A., Gorz, H.J., and Manglitz, G.R. 1970. Feeding response of the sweetclover weevil to various sugars and related compounds. Journal of Economic Entomology 63: 10791080.CrossRefGoogle Scholar
Akeson, W.R., Manglitz, G.R., Gorz, H.J., and Haskins, F.A.. 1967. A bioassay for detecting compounds which stimulate or deter feeding by the sweetclover weevil. Journal of Economic Entomology 60: 10821084.CrossRefGoogle Scholar
Bassendowski, K.A., and Muir, A.D.. 1995. Variability of nitrate levels in sweetclover seedlings. Journal of Agricultural and Food Chemistry 43: 13521356.CrossRefGoogle Scholar
Beirne, B.P. 1971. Pest Insects of Annual Crop Plants in Canada. I. Lepidoptera. II. Diptera. III. Coleoptera. Memoirs of the Entomological Society of Canada 78: 124. pp.Google Scholar
Beland, G.L., Akeson, W.R., and Manglitz, G.R.. 1970. Influence of plant maturity and plant part on nitrate content of the sweetclover weevil-resistant species Melilotus infesta. Journal of Economic Entomology 63: 10371039.CrossRefGoogle Scholar
Beland, G.L., Haskins, F.A., Manglitz, G.R., and Gorz, H.J.. 1973. Sweetclover weevil: Adenosine as a feeding stimulant. Journal of Economic Entomology 66: 10371039.CrossRefGoogle Scholar
Bird, R.D. 1947. The sweetclover weevil, Sitona cylindricollis Fåhr. The Canadian Entomologist 79: 511.CrossRefGoogle Scholar
Craig, C.H. 1978. Damage potential of the sweetclover weevil, Sitona cylindricollis, (Coleoptera: Curculionidae), in the Canadian Prairies. The Canadian Entomologist 110: 883889.CrossRefGoogle Scholar
Gross, A.T.H., and Stevenson, G.A.. 1964. Resistance in Melilotus species to the sweetclover weevil (Sitona cylindricollis). Canadian Journal of Plant Science 44: 487488.CrossRefGoogle Scholar
Hans, H., and Thorsteinson, A.J.. 1961. The influence of physical factors and host plant odour on the induction and termination of dispersal flights of Sitona cylindricollis Fåhr. Entomologia Experimentalis et Applicata 4: 165177.Google Scholar
Hoveland, C.S., and Townsend, C.E.. 1985. Other legumes. pp. 146–163 in Heath, M.E., Barnes, R.F., and Metcalfe, D.S. (Eds.), Forages The Science of Grassland Agriculture. Fourth Edition. Iowa State University Press, Ames, IA.657 pp.Google Scholar
Kulm, R.D. 1973. Nitrate Content and Nitrate Reductase Activity in Melilotus. M.Sc. thesis, University of Nebraska, Lincoln, NE. 84 pp.Google Scholar
Manglitz, G.R., and Gorz, H.J.. 1964. Host-range studies with the sweetclover weevil and the sweetclover aphid. Journal of Economic Entomology 57: 683687.CrossRefGoogle Scholar
Manglitz, G.R., Gorz, H.J., Haskins, F.A., Akeson, W.R., and Beland, G.L.. 1976. Interactions between insects and chemical components of sweetclover. Journal of Environmental Quality 5: 347352.CrossRefGoogle Scholar
Monroe, J.A., Leraas, M.A., and Nostdahl, W.D.. 1949. Biology and control of the sweetclover weevil. Journal of Economic Entomology 42: 318321.CrossRefGoogle Scholar
Muir, A.D., and Soroka, J.J.. 1992. HPLC-Ion chromatographic analysis of nitrate in plant tissues and its application to sweetclover (Melilotus) seedlings. Journal of Agricultural and Food Chemistry 40: 16021605.CrossRefGoogle Scholar
Radcliffe, E.B., and Holdaway, F.G.. 1964. Sweetclover resistance to weevil attack. Minnesota Farm and Home Science 22: 57.Google Scholar
Radcliffe, E.B., and Holdaway, F.G. 1967. Sweetclover Weevil Resistance in Melilotus Adans., Medicago L., and Trigonella L. University of Minnesota Agricultural Experiment Station Technical Bulletin 255: 26 pp.Google Scholar
SAS Institute. 1990. SAS/STAT Users' Guide. Version 6, Fourth Edition. SAS Institute, Cary, NC. Vol.1, 890 pp.Google Scholar
Thorsteinson, A.J. 1960. Host selection in phytophagous insects. Annual Review of Entomology 5: 193218.CrossRefGoogle Scholar
Wilson, M.C., and Barber, S.B.. 1954. The influence of the sweetclover weevil and soil fertility on sweetclover stands. Journal of Economic Entomology 47: 117122.CrossRefGoogle Scholar
Wilson, M.C., Davis, R.L., and Thomas, H.L.. 1956. Attractiveness of sweetclover to the sweetclover weevil. Journal of Economic Entomology 49: 444446.CrossRefGoogle Scholar