Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T09:56:40.909Z Has data issue: false hasContentIssue false

EFFECTS OF SEQUENTIAL ATTACK ON GALLERY CONSTRUCTION, OVIPOSITION, AND RE-EMERGENCE BY DENDROCTONUS FRONTALIS (COLEOPTERA: SCOLYTIDAE)1

Published online by Cambridge University Press:  31 May 2012

Terence L. Wagner
Affiliation:
Texas A&M University, College Station 77843
W. Scott Fargo
Affiliation:
Texas A&M University, College Station 77843
Larry L. Keeley
Affiliation:
Texas A&M University, College Station 77843
Robert N. Coulson
Affiliation:
Texas A&M University, College Station 77843
John D. Cover
Affiliation:
Texas A&M University, College Station 77843

Abstract

The effects of sequential attack on gallery construction, oviposition, and reemergence by Dendroctonus frontalis Zimmermann were studied in the laboratory at 25 °C. Six mating pairs were allowed to attack bark slabs in groups of 2 pairs every 2 days. Total gallery and eggs per pair decreased with increasing day of attack. The time of attack had little effect on the distance and time from the gallery origin to the first egg. Distances between eggs were shortest for pairs attacking second and greatest for pairs attacking last. Inverse relationships of egg-bearing gallery length, oviposition period, and adult residence time were observed with the day of attack.

The basic behavioral and physiological mechanisms thought to influence reproduction of D. frontalis are discussed. A hypothesis for termination of oviposition is formulated from these mechanisms, which provides greater understanding of the effects of attack density on reproduction.

Résumé

Les effets de la séquence d'attaque sur la construction des galeries, la ponte et la ré-émergence chez Dendroctonus frontalis Zimmermann, ont été étudiés en laboratoire à 25 °C. Six couples de scolytes on été mis en présence de pièces d'écorce par groupes de 2 couples à tous les 2 jours. La longueur des galeries et le nombre d'oeufs par couple ont diminué avec le temps d'attaque. Le temps d'attaque a peu affecté la distance et le temps écoulé du début de la galerie jusqu'au premier oeuf pondu. La plus courte distance entre les oeufs a été observée avec les couples ayant attaqué en deuxième lieu, et la plus longue, avec les couples arrivés en dernier. Des relations inverses furent observées entre le jour d'attaque, et la longueur des galeries abritant des oeufs, la période de ponte, et la durée de séjour des adultes.

Les mécanismes comportementaux et physiologiques de base présumés comme ayant un effet sur le reproduction font l'objet de la discussion. Une hypothèse sur la termination de la ponte est formulée à partir de ces mécanismes. Elle permet de mieux comprendre les effets de la densité des scolytes attaquant sur la reproduction.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkins, M. D. and Farris, S. H.. 1962. A contribution to the knowledge of flight muscle changes in the Scolytidae (Coleoptera). Can. Ent. 94: 2532.CrossRefGoogle Scholar
Barr, B. A. 1969. Sound production in Scolytidae (Coleoptera) with emphasis on the genus Ips. Can. Ent. 101: 636672.CrossRefGoogle Scholar
Barras, S. J. 1975. Release of fungi from mycangia of southern pine beetles observed under a scanning electron microscope. Z. angew. Ent. 79: 173176.CrossRefGoogle Scholar
Barras, S. J. and Hodges, J. D.. 1969. Carbohydrates of inner bark of Pinus taeda as affected by Dendroctonus frontalis and associated microorganisms. Can. Ent. 101: 489493.CrossRefGoogle Scholar
Coulson, R. N. 1979. Population dynamics of bark beetles. A. Rev. Ent. 24: 417447.CrossRefGoogle Scholar
Coulson, R. N. 1980. Population dynamics of the southern pine beetle. pp. 71–104 in Thatcher, R. C., Searcy, J. L., Coster, J. E. and Hertel, G. D. (Eds.), The Southern Pine Beetle. U.S. Dep. Agric. For Serv. Tech. Bull. 1631.Google Scholar
Coulson, R. N., Hain, F. P., Foltz, J. L., and Mayyasi, A. M.. 1975. Procedures for sampling southern pine beetle populations. Texas agric. Exp. Stn Misc. Publ. 1184. 20 pp.Google Scholar
Coulson, R. N., Mayyasi, A. M., Foltz, J. L., Hain, F. P., and Martin, W. C.. 1976. Resource utilization by the southern pine beetle, Dendroctonus frontalis. Can. Ent. 108: 353362.Google Scholar
Englemann, F. 1970. The Physiology of Insect Reproduction. Pergamon Press, Oxford.Google Scholar
Englemann, F. 1979. Insect vitellogenin: Identification, biosynthesis, and role in vitellogenesis. pp. 49108in Treherne, J. E., Berridge, M. J., and Wigglesworth, V. B. (Eds.), Advances in Insect Physiology, Vol. 14. Academic Press, London.Google Scholar
Fargo, W. S., Coulson, R. N., Pulley, P. E., Pope, D. N., and Kelley, C. L.. 1978. Spatial and temporal patterns of within-tree colonization by Dendroctonus frontalis (Coleoptera: Scolytidae). Can. Ent. 110: 12131232.CrossRefGoogle Scholar
Gagne, J. A. 1980. The effects of temperature on population processes of the southern pine beetle, Dendroctonus frontalis Zimmermann. Ph.D. Dissertation, Texas A&M Univ. 181 pp.Google Scholar
Gray, T. G. and Dyer, E. D. A.. 1972. Flight-muscle degeneration in the spruce beetle, Dendroctonus rufipennis. J. ent. Soc. Br. Columb. 69: 4143.Google Scholar
Hodges, J. D., Barras, S. J., and Mauldin, J. K.. 1968. Amino acids in inner bark of loblolly pine, as affected by the southern pine beetle and associated microorganisms. Can. J. Zool. 46: 14681472.Google Scholar
Keeley, L. L. 1978. Endocrine regulation of fat body development and function. A. Rev. Ent. 23: 329352.CrossRefGoogle Scholar
Moore, G. E. 1971. Mortality factors caused by pathogenic bacteria and fungi of the southern pine beetle in North Carolina. J. invert. Pathol. 17: 2837.CrossRefGoogle Scholar
Reid, R. W. 1958. Internal changes in the female mountain pine beetle, Dendroctonus monticolae Hopk., associated with egg laying and flight. Can. Ent. 90: 464468.CrossRefGoogle Scholar
Reid, R. W. 1962. Biology of the mountain pine beetle, Dendroctonus monticolae Hopkins, in the East Kootenay region of British Columbia. II. Behavior in the host, fecundity, and internal changes in the female. Can. Ent. 94: 605613.CrossRefGoogle Scholar
Sahota, T. S. 1975. Effect of juvenile hormone on acid phosphates in the degenerating flight muscles of the Douglas-fir beetle, Dendroctonus pseudotsugae. J. Insect Physiol. 21: 471478.CrossRefGoogle Scholar
Sahota, T. S. 1977. Hormonal regulation of vitellogenesis in insects. pp. 432450in Adiyodi, K. C. and Adiyodi, R. G. (Eds.), Advances in Invertebrate Reproduction, Vol. 1. Peralam — Kenoth, Karivellur Kerala, India.Google Scholar
Sahota, T. S., Chapman, J. A., and Nijholt, W. W.. 1970. Ovary development in a scolytid beetle Dendroctonus pseudotsugae (Coleoptera: Scolytidae): Effect of farnesyl methyl ether. Can. Ent. 102: 14241428.CrossRefGoogle Scholar
Thomson, A. J. and Sahota, T. S.. 1981. Competition and population quality in Dendroctonus rufipennis (Coleoptera: Scolytidae). Can. Ent. 113: 177183.CrossRefGoogle Scholar
Wagner, T. L., Gagne, J. A., Doraiswamy, P. C., Coulson, R. N., and Brown, K. W.. 1979. Development time and mortality of Dendroctonus frontalis in relation to changes in tree moisture and xylem water potential. Environ. Ent. 8: 11291139.CrossRefGoogle Scholar
Wagner, T. L., Feldman, R. M., Gagne, J. A., Cover, J. D., Coulson, R. N., and Schoolfield, R. M.. 1981. Factors affecting gallery construction, oviposition, and reemergence by Dendroctonus frontalis in the laboratory. Ann. ent. Soc. Am. 74: 255273.CrossRefGoogle Scholar