Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T10:55:02.693Z Has data issue: false hasContentIssue false

Effects of photoperiod on body size and hormone titres relating to diapause regulation in Cotesia vestalis (Hymenoptera: Braconidae)

Published online by Cambridge University Press:  27 February 2013

Zhong-Ping Hao
Affiliation:
Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
Yan-Qun Zhao
Affiliation:
Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
Zhong-Qin Yuan
Affiliation:
Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
Zu-Hua Shi*
Affiliation:
Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
*
1Corresponding author (e-mail: [email protected]).

Abstract

Photoperiods influence diapause beyond the maternal generation in Cotesia vestalis (Haliday) (Hymenoptera: Braconidae). The sizes, 20-hydroxyecdysone (20E), and juvenile hormone III (JH III) contents in the G1 diapausing prepupae, G0 nondiapausing prepupae, adults, and G1 eggs from C. vestalis cultures reared under three photoperiods (8:16 hours light:dark, 12:12 hours light:dark, and 16:8 hours light:dark) were measured to investigate the hormones’ roles on maternal information transmission and diapause regulation. Results showed that the body size of G1 diapausing prepupae was significantly larger than that of G0 nondiapausing prepupae. The sizes of G0 prepupae, female abdomens, and G1 eggs under eight-hour light were significantly larger than those under 16-hour light. The 20E content in diapausing prepupae was significantly lower than that in nondiapausing prepupae, whereas JH III content did not show significantly difference under the same photoperiod. The 20E content in maternal prepupae, mated females and G1 eggs decreased as the light period was reduced. Juvenile hormone III contents in G0-mated females and G1 eggs (after oviposition) under three photoperiods showed no significant differences. These findings suggest that 20E may play a critical role in diapause regulation of C. vestalis, and be used as a maternal environmental message to be transmitted to the next generation.

Résumé

La photopériode influence la diapause au-delà de la génération maternelle chez Cotesia vestalis (Haliday) (Hymenoptera: Braconidae). Nous avons mesuré les tailles et les contenus en 20-hydroxyecdysone (20E) et en hormone juvénile III (JH III) chez des prénymphes G1 en diapause, des prénymphes G0 non en diapause, des adultes et des œufs G1 dans des cultures de C. vestalis élevées sous trois conditions de photopériode (8:16 heures, 12:12 heures et 16:8 heures de lumière:obscurité) afin de déterminer le rôle des hormones sur la transmission de l'information maternelle et la régulation de la diapause. Nos résultats indiquent que la taille corporelle des prénymphes G1 en diapause est significativement plus grande que celle des prénymphes G0 non en diapause. Les tailles des prénymphes G0, des abdomens des femelles et des œufs G1 gardés sous 8 heures de lumière sont significativement plus grandes que celles observées sous des conditions de 16 heures de lumière. Le contenu en 20E des prénymphes en diapause est significativement plus bas que celui des prénymphes non en diapause, alors que le contenu en JH III ne montre pas de différence significative sous les mêmes conditions de photopériode. Les contenus en 20E des prénymphes maternelles, des femelles accouplées et des œufs G1 diminuent avec une réduction de la période de lumière. Les contenus en JH III de femelles G0 accouplées et d’œufs G1 (après la ponte) sous trois photopériodes ne montrent aucune différence significative. Ces résultats laissent croire que 20E peut jouer un rôle essentiel dans la régulation de la diapause chez C. vestalis et servir de message environnemental maternel à être transmis à la génération suivante.

Type
Physiology, Biochemistry, Development, & Genetics
Copyright
Copyright © Entomological Society of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, U.A.M. 2007. Induction and termination of diapause and physiological change during the diapause of Cotesia plutellae. Ph.D. dissertation, Zhejiang University, China.Google Scholar
Ahmed, U.A.M., Shi, Z.H., Guo, Y.L., Zou, X.F., Hao, Z.P., Pang, S.T. 2007. Maternal photoperiod effect on and geographic variation of diapause incidence in Cotesia plutellae (Hymenoptera: Braconidae) from China. Applied Entomology and Zoology, 42: 383389 . doi:10.1303/aez.2007.383.CrossRefGoogle Scholar
Alvi, S.M.Momoi, S. 1994. Environmental regulation and geographical adaptation of diapause in Cotesia plutellae (Hymenoptera: Braconidae), a parasitoid of the diamondback moth larvae. Applied Entomology and Zoology, 29: 8995.CrossRefGoogle Scholar
Bede, J.C., Goodman, W.G., Tobe, S.S. 2000. Quantification of juvenile hormone III in the sedge Cyperus iria L.: comparison of HPLC and radioimmunoassay. Phytochemical Analysis, 11: 2128 . doi:10.1002/(SICI)1099-1565(200001/02)11:1<21::AID-PCA485>3.0.CO;2-A.3.0.CO;2-A>CrossRefGoogle Scholar
Bendena, W.G., Zhang, J., Burtenshaw, S.M., Tobe, S.S. 2011. Evidence for differential biosynthesis of juvenile hormone (and related) sesquiterpenoids in Drosophila melanogaster. General and Comparative Endocrinology, 172: 5661 . doi:10.1016/j.ygcen.2011.02.014.CrossRefGoogle ScholarPubMed
Bylemans, D., Borovsky, D., Ujvary, I., De Loof, A. 1998. Biosynthesis and regulation of juvenile hormone III, juvenile hormone III bisepoxide, and methyl farnesoate during the reproductive cycle of the grey fleshfly, Neobellieria (Sarcophaga) bullata. Archives of Insect Biochemistry and Physiology, 37: 248256 . doi:10.1002/(SICI)1520-6327(1998)37:3<248::AID-ARCH8>3.0.CO;2-O.3.0.CO;2-O>CrossRefGoogle Scholar
Christiansen-Weniger, P.Hardie, J. 1999. Environmental and physiological factors for diapause induction and termination in the aphid parasitoid, Aphidius ervi (Hymenoptera: Aphidiidae). Journal of Insect Physiology, 45: 357364 . doi:10.1016/S0022-1910(98)00134-6.CrossRefGoogle ScholarPubMed
Colombani, J., Bianchini, L., Layalle, S., Pondeville, E., Dauphin-Villemant, C., Antoniewski, C., et al. 2005. Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science, 310: 667670 . doi:10.1126/science.1119432.CrossRefGoogle ScholarPubMed
De Loof, A., van Loon, J., Vanderroost, C. 1979. Influence of ecdysterone, precocene and compounds with juvenile hormone activity on induction, termination and maintenance of diapause in the parasitoid wasp, Nasonia vitripennis. Physiological Entomology, 4: 319328 . doi:10.1111/j.1365-3032.1979.tb00623.x.CrossRefGoogle Scholar
Denlinger, D.L. 2002. Regulation of diapause. Annual Review of Entomology, 47: 93122 . doi:10.1146/annurev.ento.47.091201.145137.CrossRefGoogle ScholarPubMed
Denlinger, D.L., Yocum, G.D., Rinehart, J.P. 2005. Hormonal control of diapause. In Comprehensive molecular insect science. Volume 3. Edited by L.I. Gilbert, K. Iatrou, and S.S. Gill. Elsevier Press, Amsterdam, The Netherlands. Pp. 615650.CrossRefGoogle Scholar
Denlinger, D.L., Yocum, G.D., Rinehart, J.P. 2011. Hormone control of diapause. In Insect endocrinology. Volume 1. Edited by L.I. Gilbert. Elsevier, Amsterdam, The Netherlands. Pp. 430463.Google Scholar
Eizaguirre, M., Lopez, C., Schafellner, C., Sehnal, F. 2007. Effects of ecdysteroid agonist RH-2485 reveal interactions between ecdysteroids and juvenile hormones in the development of Sesamia nonagrioides. Archives of Insect Biochemistry and Physiology, 65: 7484 . doi:10.1002/arch.20181.CrossRefGoogle ScholarPubMed
Eizaguirre, M., Prats, J., Abellana, M., Lopez, C., Llovera, M., Canela, R. 1998. Juvenile hormone and diapause in the Mediterranean corn borer, Sesamia nonagrioides. Journal of Insect Physiology, 44: 419425 . doi:10.1016/S0022-1910(98)00019-5.CrossRefGoogle ScholarPubMed
Eizaguirre, M., Schafellner, C., Lopez, C., Sehnal, F. 2005. Relationship between an increase of juvenile hormone titer in early instars and the induction of diapause in fully grown larvae of Sesamia nonagrioides. Journal of Insect Physiology, 51: 11271134 . doi:10.1016/j.jinsphys.2005.05.010.CrossRefGoogle ScholarPubMed
Emerson, K.J., Bradshaw, W.E., Holzapfel, C.M. 2009. Complications of complexity: integrating environmental, genetic and hormonal control of insect diapause. Trends in Genetics, 25: 217225 . doi:10.1016/j.tig.2009.03.009.CrossRefGoogle ScholarPubMed
Endo, K., Fujimoto, Y., Kondo, M., Yamanaka, A., Watanabe, M., Kong, W.H., et al. 1997. Stage-dependent changes of the prothoracicotropic hormone (PTTH) activity of brain extracts and of the PTTH sensitivity of the prothoracic glands in the cabbage armyworm, Mamestra brassicae, before and during winter and aestival pupal diapause. Zoological Science, 14: 127133 . doi:10.2108/zsj.14.127.CrossRefGoogle Scholar
Ferenz, H.J. 1981. Effect of the photoperiod on corpus allatum activity in vitro in the beetle, Pterostichus nigrita F. Experientia, 37: 12111213 . doi:10.1007/BF01989924.CrossRefGoogle Scholar
Finch, C.E.Rose, M.R. 1995. Hormones and the physiological architecture of life history evolution. The Quarterly Review of Biology, 70: 152 . doi:10.1086/418864.CrossRefGoogle ScholarPubMed
Flatt, T., Tu, M.P., Tatar, M. 2005. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. BioEssays, 27: 9991010 . doi:10.1002/bies.20290.CrossRefGoogle ScholarPubMed
Gaudry, E., Blais, C., Maria, A., Dauphin-Villemant, C. 2006. Study of steroidogenesis in pupae of the forensically important blow fly Protophormia terraenovae (Robineau-Desvoidy) (Diptera: Calliphoridae). Forensic Science International, 160: 2734 . doi:10.1016/j.forsciint.2005.06.014.CrossRefGoogle ScholarPubMed
Genta, F.A., Souza, R.S., Garcia, E.S., Azambuja, P. 2010. Phenol oxidases from Rhodnius prolixus: temporal and tissue expression pattern and regulation by ecdysone. Journal of Insect Physiology, 56: 12531259 . doi:10.1016/j.jinsphys.2010.03.027.CrossRefGoogle ScholarPubMed
Geva, S., Hartfelder, K., Bloch, G. 2005. Reproductive division of labor, dominance, and ecdysteroid levels in hemolymph and ovary of the bumble bee Bombus terrestris. Journal of Insect Physiology, 51: 811823 . doi:10.1016/j.jinsphys.2005.03.009.CrossRefGoogle ScholarPubMed
Hagedorn, H.H. 1985. The role of ecdysteroids in reproduction. In Comprehensive insect physiology biochemistry and pharmacology. Volume 8. Edited by G.A. Kerkut and L.I. Glibert. Pergamon Press, Oxford, United Kingdom. Pp. 205262.Google Scholar
Hahn, D.A.Denlinger, D.L. 2007. Meeting the energetic demands of insect diapause: nutrient storage and utilization. Journal of Insect Physiology, 53: 760773 . doi:10.1016/j.jinsphys.2007.03.018.CrossRefGoogle ScholarPubMed
Hahn, D.A.Denlinger, D.L. 2011. Energetics of insect diapause. Annual Review of Entomology, 56: 103121 . doi:10.1146/annurev-ento-112408-085436.CrossRefGoogle ScholarPubMed
Hartfelder, K. 2000. Insect juvenile hormone: from “status quo” to high society. Brazilian Journal of Medical and Biological Research, 33: 157177 . doi:10.1590/S0100-879×2000000200003.CrossRefGoogle Scholar
Henrich, V.C.Denlinger, D.L. 1982. A maternal effect that elimiates pupal diapause in progeny of the flesh fly, Sarcophaga bullata. Journal of Insect Physiology, 28: 881884 . doi:10.1016/0022-1910(82)90102-0.CrossRefGoogle Scholar
Hodkova, M., Okuda, T., Wagner, R.M. 2001. Regulation of corpora allata in females of Pyrrhocoris apterus (Heteroptera) (a mini-review). In vitro Cellular & Developmental Biology – Animal, 37: 560563 . doi:10.1290/1071-2690(2001)037<0560:ROCAIF>2.0.CO;2.2.0.CO;2>CrossRefGoogle ScholarPubMed
Hoffmann, J.A.Lagueux, M. 1985. Endocrine aspects of embryonic development in insects. In Comprehensive insect physiology, biochemistry, and pharmacology. Volume 1. Edited by G.A. Kerkut and L.I. Gilbert. Pergamon Press, Oxford, United Kingdom. Pp. 435460.Google Scholar
Horike, N.Sonobe, H. 1999. Ecdysone 20-monooxygenase in eggs of the silkworm, Bombyx mori: enzymatic properties and developmental changes. Archives of Insect Biochemistry and Physiology, 41: 917 . doi:10.1002/(SICI)1520-6327(1999)41:1<9::AID-ARCH3>3.3.CO;2-7.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Ishikawa, A., Ogawa, K., Gotoh, H., Walsh, T.K., Tagu, D., Brisson, J.A., et al. 2012. Juvenile hormone titre and related gene expression during the change of reproductive modes in the pea aphid. Insect Molecular Biology, 21: 4960 . doi:10.1111/j.1365-2583.2011.01111.x.CrossRefGoogle ScholarPubMed
Islam, A.T., Nankaku, N., Marui, Y., Shahjahan, R., Kong, W., Yamanaka, A., et al. 2005. Neuroendocrine roles of the brain in the regulation of 20-hydroxyecdysone responsiveness in two types of diapause pupae of the cabbage armyworm, Mamestra brassicae. Zoological Science, 22: 775781 . doi:10.2108/zsj.22.775.CrossRefGoogle ScholarPubMed
Jiang, X.F., Huang, S.H., Luo, L.Z. 2011. Juvenile hormone changes associated with diapause induction, maintenance, and termination in the beet webworm, Loxostege sticticalis (Lepidoptera: Pyralidae). Archives of Insect Biochemistry and Physiology, 77: 134144 . doi:10.1002/arch.20429.CrossRefGoogle Scholar
Katagiri, N., Ando, O., Yamashita, O. 1998. Reduction of glycogen in eggs of the silkworm, Bombyx mori, by use of a trehalase inhibitor, trehazolin, and diapause induction in glycogen-reduced eggs. Journal of Insect Physiology, 44: 12051212 . doi:10.1016/S0022-1910(98)00088-2.CrossRefGoogle ScholarPubMed
Kiuchi, M., Yasui, H., Hayasaka, S., Kamimura, M. 2003. Entomogenous fungus Nomuraea rileyi inhibits host insect molting by C22-oxidizing inactivation of hemolymph ecdysteroids. Archives of Insect Biochemistry and Physiology, 52: 3544 . doi:10.1002/arch.10060.CrossRefGoogle ScholarPubMed
Kumar, D., Subrahmanyam, B., Sharan, S.K., Mishra, P.K., Singh, B.M.K., Suryanarayana, N. 2008. Endogenous 20-hydroxyecdysone levels in the haemolymph of non-diapause-destined and diapause-destined generations of tasar silkworm, Antheraea mylitta (Lepidoptera: Saturniidae) and associated developmental changes. European Journal of Entomology, 105: 591598.CrossRefGoogle Scholar
Lafont, R., Dauphin-Villemant, C., Warren, J.T., Rees, H. 2005. Ecdysteroid chemistry and biochemistry. In Comprehensive molecular insect science. Volume 3. Edited by L.I. Gilbert, K. Iatrou, and S. Gill. Elsevier Press, Oxford, United Kingdom. Pp. 125195.CrossRefGoogle Scholar
Lapenna, S.Dinan, L. 2009. HPLC and TLC characterisation of ecdysteroid alkyl ether. Journal of Chromatography B, 877: 29963002 . doi:10.1016/j.jchromb.2009.07.014.CrossRefGoogle Scholar
Makka, T., Seino, A., Tomita, S., Fujiwara, H., Sonobe, H. 2002. A possible role of 20-hydroxyecdysone in embryonic development of the silkworm Bombyx mori. Archives of Insect Biochemistry and Physiology, 51: 111120 . doi:10.1002/arch.10055.CrossRefGoogle ScholarPubMed
Marchal, E., Vandersmissen, H.P., Badisco, L., Van de Velde, S., Verlinden, H., Iga, M., et al. 2010. Control of ecdysteroidogenesis in prothoracic glands of insects: a review. Peptides, 31: 506519 . doi:10.1016/j.peptides.2009.08.020.CrossRefGoogle ScholarPubMed
Martini, A., Chieco, C., Dindo, M.L., Baronio, P. 2011. The embryonic development of Diprion pini and the related ecdysteroid levels. Bulletin of Insectology, 64: 253262.Google Scholar
Masuda, H.Oliveira, P.L. 1985. Characterization of vitellin and vitellogenin from Rhodnius prolixus: identification of phosphorylated compounds in the molecule. Insect Biochemistry, 15: 543550 . doi:10.1016/0020-1790(85)90068-X.CrossRefGoogle Scholar
Mirth, C.K.Riddiford, L.M. 2007. Size assessment and growth control: how adult size is determined in insects. BioEssays, 29: 344355 . doi:10.1002/bies.20552.CrossRefGoogle ScholarPubMed
Mousseau, T.A.Dingle, H. 1991a. Maternal effects in insect life histories. Annual Review of Entomology, 36: 511534 . doi:10.1146/annurev.en.36.010191.002455.CrossRefGoogle Scholar
Mousseau, T.A.Dingle, H. 1991b. Maternal effects in insects: examples, constraints, and geographic variation. In The unity of evolutionary biology. Edited by E.C. Dudley. Dioscoridies, Portland, Oregon, United States of America. Pp. 745761.Google Scholar
Munyiri, F.N.Ishikawa, Y. 2004. Endocrine changes associated with metamorphosis and diapause induction in the yellow-spotted longicorn beetle, Psacothea hilaris. Journal of Insect Physiology, 50: 10751081 . doi:10.1016/j.jinsphys.2004.09.009.CrossRefGoogle ScholarPubMed
Nijhout, H.F. 1994. Insect hormones. Princeton University Press, Princeton, New Jersey, United States of America.CrossRefGoogle Scholar
Nijhout, H.F. 2003. The control of body size in insects. Developmental Biology, 261: 19 . doi:10.1016/S0012-1606(03)00276-8.CrossRefGoogle ScholarPubMed
Pascual, N., Cerdá, X., Benito, B., Tomás, J., Piulachs, M.D., Bellés, X. 1992. Ovarian ecdysteroid levels and basal oöcyte development during maturation in the cockroach Blattella germanica (L.). Journal of Insect Physiology, 38: 339348 . doi:10.1016/0022-1910(92)90058-L.CrossRefGoogle Scholar
Pérez-Hedo, M., Goodman, W.G., Schafellner, C., Martini, A., Sehnal, F., Eizaguirre, M. 2011. Control of larval–pupal-adult molt in the moth Sesamia nonagrioides by juvenile hormone and ecdysteroids. Journal of Insect Physiology, 57: 602607 . doi:10.1016/j.jinsphys.2011.01.017.CrossRefGoogle ScholarPubMed
Polanska, M.A., Maksimiuk-Ramirez, E., Ciuk, M.A., Kotwica, J., Bebas, P. 2009. Clock-controlled rhythm of ecdysteroid levels in the haemolymph and testes, and its relation to sperm release in the Egyptian cotton leafworm, Spodoptera littoralis. Journal of Insect Physiology, 55: 426434 . doi:10.1016/j.jinsphys.2009.01.019.CrossRefGoogle ScholarPubMed
Rharrabe, K., Bouayad, N., Sayah, F. 2009. Effects of ingested 20-hydroxyecdysone on development and midgut epithelial cells of Plodia interpunctella (Lepidoptera, Pyralidae). Pesticide Biochemistry and Physiology, 93: 112119 . doi:10.1016/j.pestbp.2008.12.002.CrossRefGoogle Scholar
Richard, D.S., Jones, J.M., Barbarito, M.R., Cerula, S., Detweiler, J.P., Fisher, S.J., et al. 2001. Vitellogenesis in diapausing and mutant Drosophila melanogaster: further evidence for the relative roles of ecdysteroids and juvenile hormones. Journal of Insect Physiology, 47: 905913 . doi:10.1016/S0022-1910(01)00063-4.CrossRefGoogle Scholar
Riddiford, L.M. 1980. Insect endocrinology: action of hormones at the cellular level. Annual Review of Physiology, 42: 511528 . doi:10.1146/annurev.ph.42.030180.002455.CrossRefGoogle ScholarPubMed
Riddiford, L.M., Hiruma, K., Zhou, X., Nelson, C.A. 2003. Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 33: 13271338 . doi:10.1016/j.ibmb.2003.06.001.CrossRefGoogle ScholarPubMed
Sato, Y. 1980. Experimental studies on parasitization by Apanteles glomeratus V. Relationships between growth rate of parasitoid and host age at the time of oviposition. Biocontrol, 25: 123128 . doi:10.1007/BF02374314.Google Scholar
Saunders, D.S. 1997. Under-sized larvae from short-day adults of the blow fly, Calliphora vicina, side-step the diapause programme. Physiological Entomology, 22: 249255 . doi: 10.1111/j.1365-3032.1997.tb01165.x.CrossRefGoogle Scholar
Schwedes, C.C.Carney, G.E. 2012. Ecdysone signaling in adult Drosophila melanogaster. Journal of Insect Physiology, 58: 293302 . doi:10.1016/j.jinsphys.2012.01.013.CrossRefGoogle ScholarPubMed
Sinervo, B.Svensson, E. 1998. Mechanistic and selective causes of life history trade-offs and plasticity. Oikos, 83: 432442 . doi:10.2307/3546671.CrossRefGoogle Scholar
Singtripop, T., Manaboon, M., Tatun, N., Kaneko, Y., Sakurai, S. 2008. Hormonal mechanisms underlying termination of larval diapause by juvenile hormone in the bamboo borer, Omphisa fuscidentalis. Journal of Insect Physiology, 54: 137145 . doi:10.1016/j.jinsphys.2007.08.011.CrossRefGoogle ScholarPubMed
Singtripop, T., Wanichacheewa, S., Sakurai, S. 2000. Juvenile hormone-mediated termination of larval diapause in the bamboo borer, Omphisa fuscidentalis. Insect Biochemistry and Molecular Biology, 30: 847854 . doi:10.1016/S0965-1748(00)00057-6.CrossRefGoogle ScholarPubMed
Singtripop, T., Wanichacheewa, S., Tsuzuki, S., Sakurai, S. 1999. Larval growth and diapause in a tropical moth, Omphisa fuscidentalis Hampson. Zoological Science, 16: 725733 . doi:10.2108/zsj.16.725.CrossRefGoogle Scholar
Sonobe, H., Tokushige, H., Makka, T., Tsutsumi, H., Hara, N., Fujimoto, Y. 1999. Comparative studies of ecdysteroid metabolism between diapause eggs and non-diapause eggs of the silkworm, Bombyx mori. Zoological Science, 16: 935943 . doi:10.2108/zsj.16.935.CrossRefGoogle Scholar
Stoffolano, J.G., Li, M.F., Zou, B.X., Yin, C.M. 1992. Vitellogenin uptake, not synthesis, is dependent on juvenile hormone in adults of Phormia regina (Meigen). Journal of Insect Physiology, 38: 839845 . doi:10.1016/0022-1910(92)90094-T.CrossRefGoogle Scholar
Strambi, A., Strambi, C., De Reggi, M. 1977. Ecdysones and ovarian physiology in the adult wasp Polistes gallicus. In Proceedings of the 8th International Congress of the International Union for the Study of Social Insects. Edited by J. de Wilde. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands. Pp. 19–20.Google Scholar
Suzuki, T., Sakurai, S., Iwami, M. 2011. Steroidal regulation of hydrolyzing activity of the dietary carbohydrates in the silkworm, Bombyx mori. Journal of Insect Physiology, 57: 12821289 . doi:10.1016/j.jinsphys.2011.06.003.CrossRefGoogle ScholarPubMed
Tawfik, A.I., Tanaka, Y., Tanaka, S. 2002a. Possible involvement of ecdysteroids in embryonic diapause of Locusta migratoria. Journal of Insect Physiology, 48: 743749 . doi:10.1016/S0022-1910(02)00099-9.CrossRefGoogle ScholarPubMed
Tawfik, A.I., Tanaka, Y., Tanaka, S. 2002b. Possible involvement of ecdysteroids in photoperiodically induced suppresion of ovarian development in a Japanese strain of the migratory locust, Locusta migratoria. Journal of Insect Physiology, 48: 411418 . doi:10.1016/S0022-1910(02)00058-6.CrossRefGoogle Scholar
Tawfik, A.I., Vedrova, A., Li, W.W., Sehnal, F., Obeng-Ofori, D. 1997. Haemolymph ecdysteroids and the prothoracic glands in the solitary and Gregarious adults of Schistocerca Gregaria. Journal of Insect Physiology, 43: 485493 . doi:10.1016/S0022-1910(96)00116-3.CrossRefGoogle Scholar
Tian, L., Guo, E., Wang, S., Liu, S., Jiang, R.J., Cao, Y., et al. 2010. Developmental regulation of glycolysis by 20-hydroxyecdysone and juvenile hormone in fat body tissues of the silkworm, Bombyx mori. Journal of Molecular Cell Biology, 2: 255263 . doi:10.1093/jmcb/mjq020.CrossRefGoogle ScholarPubMed
Wasielewski, O., Giejdasz, K., Wojciechowicz, T., Skrzypski, M. 2011a. Ovary growth and protein levels in ovary and fat body during adult-wintering period in the red mason bee, Osmia rufa. Apidologie, 42: 749758 . doi:10.1007/s13592-011-0084-y.CrossRefGoogle Scholar
Wasielewski, O., Wojciechowicz, T., Giejdasz, K., Krishnan, N. 2011b. Influence of methoprene and temperature on diapause termination in adult females of the over-wintering solitary bee, Osmia rufa L. Journal of Insect Physiology, 57: 16821688 . doi:10.1016/j.jinsphys.2011.09.002.CrossRefGoogle ScholarPubMed
Wijayaratne, L.K.W., Fields, P.G., Arthur, F.H. 2012. Effect of methoprene on the progeny production of Tribolium castaneum (Coleoptera: Tenebrionidae). Pest Management Science, 68: 217224 . doi:10.1002/ps.2247.CrossRefGoogle ScholarPubMed
Yamada, R.Sonobe, H. 2003. Purification, kinetic characterization, and molecular cloning of a novel enzyme ecdysteroid-phosphate phosphatase. The Journal of Biological Chemistry, 278: 2636526373 . doi:10.1074/jbc.M304158200.CrossRefGoogle ScholarPubMed
Yamada, R., Yamahama, Y., Sonobe, H. 2005. Release of ecdysteroid-phosphates from egg yolk granules and their dephosphorylation during early embryonic development in silkworm, Bombyx mori. Zoological Science, 22: 187198 . doi:10.2108/zsj.22.187.CrossRefGoogle ScholarPubMed
Yamazaki, Y., Kiuchi, M., Takeuchi, H., Kubo, T. 2011. Ecdysteroid biosynthesis in workers of the European honeybee Apis mellifera L. Insect Biochemistry and Molecular Biology, 41: 283293 . doi:10.1016/j.ibmb.2011.01.005.CrossRefGoogle ScholarPubMed
Yang, Y.H., Dai, H.G., Han, H.R., Wang, M.H. 1997. Determination of juvenile hormone in brown planthopper (Nilaparvata lugens) by HPLC. Entomological Journal of East China, 6: 2427 [In Chinese with English summary].Google Scholar
Zhang, L., Luo, L.Z., Jiang, X.F. 2008. Starvation influences allatotropin gene expression and juvenile hormone titer in the adult oriental armyworm, Mythimna separata. Archives of Insect Biochemistry and Physiology, 68: 6370 . doi:10.1002/arch.20255.CrossRefGoogle ScholarPubMed
Zhao, Z.W.Zera, A.J. 2004. The hemolymph JH titer exhibits a large-amplitude, morph-dependent, diurnal cycle in the wing-polymorphic cricket, Gryllus firmus. Journal of Insect Physiology, 50: 93102 . doi:10.1016/j.jinsphys.2003.10.003.CrossRefGoogle ScholarPubMed