Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-01T03:45:34.145Z Has data issue: false hasContentIssue false

EFFECTS OF LOW APPLICATION RATES OF THE PYRETHROID PP321 ON THE APPLE ORCHARD MITE COMPLEX (ACARI) IN ONTARIO

Published online by Cambridge University Press:  31 May 2012

S.Y. Li
Affiliation:
Biology Department, Queen's University, Kingston, Ontario, CanadaK7L 3N6
R. Harmsen
Affiliation:
Biology Department, Queen's University, Kingston, Ontario, CanadaK7L 3N6

Abstract

The impacts of the pyrethroid PP321 on the mite fauna in an apple orchard were studied at the Smithfield Experimental Farm of Agriculture Canada, Ontario, from 1988 to 1989. Two predacious mites, the phytoseiid Amblyseius fallacis (Garman) and the stigmaeid Zetzellia mali (Ewing), were affected by pyrethroid applications. The highest numbers of predators were found in untreated trees, and the lowest numbers were found in the trees treated with the higher rate of the pyrethroid (P < 0.05). Zetzellia mali has roughly the same susceptibility to PP321 as does A. fallacis. Two species of tetranychid phytophagous mites, the European red mite, Panonychus ulmi (Koch), and the twospotted spider mite, Tetranychus urticae Koch, were positively associated with pyrethroid applications. Significantly higher numbers of these mites were found in the pyrethroid-treated trees than in untreated ones (P < 0.05). Another phytophagous mite, the apple rust mite, Aculus schlechtendali (Nalepa) (Eriophyidae), was strongly suppressed by PP321 applications. Lower rate applications of the pyrethroid allowed more predators to survive, and resulted in lower abundances of tetranychid mites than did the higher rate. Therefore, reduced rates of pyrethroids may prove to be compatible with integrated control of spider mites in apple orchards.

Résumé

L’impact d’applications du pyréthroïde PP321 sur la faune des acariens des vergers de pommiers a fait l’objet d’une étude à la Ferme expérimentale Smithfieid du Ministère de l’agriculture du Canada, en Ontario, en 1988 el 1989. Deux acariens prédateurs, le phytoseiidé Amblyseius fallacis (Garman) el le stigmaeidé Zetzellia mali (Ewing), étaient affectés par l’application du produit. Les plus grands nombres de prédateurs ont été rencontrés dans les arbres non traités et les nombres les moins importants ont été relevés dans les arbres traités aux concentrations les plus fortes du pyréthroïde (P < 0,05). Zetzellia mali a à peu près la même susceptibilité au produit qu’A. fallacis. Deux espèces d’acariens tetranychidés phytophages, le Tétranyque rouge du pommier, Panonychus ulmi (Koch), et le Tétranyque à deux points. Tetranychus urticae Koch, se sont avérées en corrélation positive avec les applications du produit. Des nombres significative ment plus élevés de ces acariens ont été trouvés dans les arbres traités que dans les arbres non traités (P < 0,05). Un autre acarien phytophage, l’Ériophyide du pommier, Aculus schlechtendali (Nalepa) (Eriophyidae), s’est trouvé très affecté par les applications de PP321. Des dosages plus faibles du pyréthroïde permettent à plus de prédateurs de survivre et réduisent plus efficacement l’abondance des acariens tétranychidés que les dosages plus élevés. Il semble donc que des applications plus légères de pyréthroïdes soient compatibles avec les programmes intégrés de contrôle des acariens dans les vergers de pommiers.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AliNiazee, M.T., and Cranham, J.E.. 1980. Effect of four synthetic pyrethroids on a predatory mite, Typhlodromus pyri, and its prey Panonychus ulmi, on apples in Southeast England. Environ. Ent. 9: 436439.CrossRefGoogle Scholar
Anonymous. 1990. Integrated pest management for apple orchards in Ontario. Ont. Ministry Agric. Food Publ. 360. 59 pp.Google Scholar
Bostanian, N.J., Belanger, A., and Rivard, I.. 1985. Residues of four synthetic pyrethroids and azinphosmethyl on apple foliage and their toxicity to Amblyseius fallacis (Acari: Phytoseiidae). Can. Ent. 117: 143152.CrossRefGoogle Scholar
Croft, B.A., and Brown, A.W.A.. 1975. Responses of arthropod natural enemies to insecticides. A. Rev. Ent. 20: 285335.CrossRefGoogle ScholarPubMed
Croft, B.A., and Meyer, R.H.. 1973. Carbamate and organophosphorus resistance patterns in populations of Amblyseius fallacis. Environ. Ent. 2: 691695.CrossRefGoogle Scholar
Croft, B.A., and Nelson, E.E.. 1972. Toxicity of apple orchard pesticides to Michigan populations of Amblyseius fallacis. Environ. Ent. 1: 576579.CrossRefGoogle Scholar
Croft, B.A., Wagner, S.W., and Scott, J.G.. 1982. Multiple- and cross-resistances to insecticides in Pyrethroid-resistant strains of the predatory mite, Amblyseius fallacis. Environ. Ent. 11: 161164.CrossRefGoogle Scholar
Elliott, M., Janes, N.F., and Potter, C.. 1978. The future of pyrethroids in insect control. A. Rev. Ent. 23: 443469.CrossRefGoogle Scholar
Hagley, E.A.C., Monteith, L.G., Herne, D.H.C., and Trottier, R.. 1977. Pest population buildup in apple orchards following omission of insecticide sprays. Proc. ent. Soc. Ont. 108: 711.Google Scholar
Hall, F.R. 1979. Effects of synthetic pyrethroids on major insect and mite pests of apple. J. econ. Ent. 72: 441446.CrossRefGoogle Scholar
Hardman, J.M., Rogers, R.E.L., and MacLellan, C.R.. 1988. Advantages and disadvantages of using pyrethroids in Nova Scotia apple orchards. J. econ. Ent. 81: 17371749.CrossRefGoogle Scholar
Harmsen, R. 1990. The theory of sustainable agriculture: Opportunities and problems. Proc. ent. Soc. Ont. 121: 1324.Google Scholar
Herbert, H.J., and Sanford, K.H.. 1969. The influence of spray programs on the fauna of apple orchards in Nova Scotia. XIX. Apple rust mite, Vasates schlechtendali, a food source for predators. Can. Ent. 101: 6267.CrossRefGoogle Scholar
Hoy, M.A., Groot, J.J.R., and de Baan, H.E.V.. 1985. Influence of aerial dispersal on persistence and spread of pesticide-resistant Metaseiulus occidentalis in California almond orchards. Entomologia exp. appl. 37: 1731.CrossRefGoogle Scholar
Hoyt, S.C. 1969. Integrated chemical control of insects and biological control of mites on apple in Washington. J. econ. Ent. 62: 7486.CrossRefGoogle Scholar
Hoyt, S.C., Westigard, P.H., and Burts, E.C.. 1978. Effects of two synthetic pyrethroids on the codling moth, pear psylla and various mite species in northwest apple and pear orchards. J. econ. Ent. 71: 431434.CrossRefGoogle Scholar
Hull, L.A., Beers, E.H., and Meagher, R.L. Jr, 1985. Impact of selective use of the synthetic pyrethroid fenvalerate on apple pests and natural enemies in large-orchard trials. J. econ. Ent. 78: 163168.CrossRefGoogle Scholar
Hull, L.A., and Starner, V.R.. 1983. Impact of four synthetic pyrethroids on major natural enemies and pests of apples in Pennsylvania. J. econ. Ent. 76: 122130.CrossRefGoogle Scholar
Johnson, D.T., and Croft, B.A.. 1981. Dispersal of Amblyseius fallacis in an apple ecosystem. Environ. Ent. 10: 313319.CrossRefGoogle Scholar
Kapetanakis, K.G., Warman, T.M., and Cranham, J.E.. 1986. Effects of permethrin sprays on the mite fauna of apple orchards. Ann. appl. Biol. 108: 2132.CrossRefGoogle Scholar
Li, S.Y., Clements, D.R., and Harmsen, R.. 1992. Impact of low-rate pyrethroid applications on the spotted tentiform leafminer (Lepidoptera: Gracillariidae) and its parasitoids in an apple orchard. J. econ. Ent. 85(1): 192201.CrossRefGoogle Scholar
Marshall, D.B., and Pree, D.J.. 1986. Effects of pyrethroid insecticides on eggs and larvae of resistant and susceptible populations of the spotted tentiform leafminer. Can. Ent. 118: 11231130.CrossRefGoogle Scholar
Motoyama, N., Rock, G.C., and Dauterman, W.C.. 1970. Organophosphorus resistance in an apple orchard population of Typhlodromus (Amblyseius) fallacis. J. econ. Ent. 63: 14391442.CrossRefGoogle Scholar
Overmeer, W.P.J. 1985. Alternative prey and other food resources. pp. 131–137 in Helle, W., and Sabelis, M.W. (Eds.), Spider Mites: Their Biology, Natural Enemies and Control. Vol. 1B. Elsevier, Amsterdam, The Netherlands. 458 pp.Google Scholar
Pree, D.J., Hagley, E.A.C., Simpson, C.M., and Hikichi, A.. 1980. Resistance of the spotted tentiform leafminer, Phyllonorycter blancardella (Lepidoptera: Gracillariidae), to organophosphorous insecticides in southern Ontario. Can. Ent. 112: 469474.CrossRefGoogle Scholar
Pree, D.J., Marshall, D.B., and Archibald, D.E.. 1986. Resistance to pyrethroid insecticides in the spotted tentiform leafminer, Phyllonorycter blancardella (Lepidoptera: Gracillariidae) in southern Ontario. J. econ. Ent. 79: 318322.CrossRefGoogle Scholar
Riedl, H., and Hoying, S.A.. 1980. Impact of fenvalerate and diflubenzuron on target and non-target arthropod species on Bartlett pears in northern California. J. econ. Ent. 73: 117122.CrossRefGoogle Scholar
Rock, G.C. 1979. Relative toxicity of two synthetic pyrethroids to a predator Amblyseius fallacis and its prey Tetranychus urticae. J. econ. Ent. 72: 293294.CrossRefGoogle Scholar
Ruscoe, C.N.E. 1977. The new NRDC pyrethroids as agricultural insecticides. Pestic. Sci. 8: 236242.CrossRefGoogle Scholar
Strickler, K., and Croft, B.A.. 1981. Variation in permethrin and azinphosmethyl resistance in populations of Amblyseius fallacis. Environ. Ent. 10: 233236.CrossRefGoogle Scholar
Strickler, K., and Croft, B.A.. 1982. Selection for permethrin resistance in the predatory mite Amblyseius fallacis. Entomologia exp. appl. 31: 339345.CrossRefGoogle Scholar
Thistlewood, H.M.A. 1991. A survey of predatory mites in Ontario apple orchards with diverse pesticide programs. Can. Ent. 123: 11631174.CrossRefGoogle Scholar
Weires, R.W., and Smith, G.L.. 1978. Apple, mite control, Hudson Valley, 1977 insecticide and acaricide tests. Ent. Soc. Am. Misc. Publ. 3: 4243.Google Scholar
Weires, R.W., and Soderlund, D.M.. 1980. The synthetic pyrethroids: Their development and mode of action against fruit pests. Proc. N. Y. State Hort. Soc. 125: 108113.Google Scholar
White, N.D.G., and Laing, J.E.. 1977. Field observations of Zetzellia mali in southern Ontario apple orchards. Proc. ent. Soc. Ont. 108: 2330.Google Scholar
Woolhouse, M.E.J., and Harmsen, R.. 1984. The mite complex on the foliage of a pesticide-free apple orchard: Population dynamics and habitat associations. Proc. ent. Soc. Ont. 115: 111.Google Scholar
Zar, J.H. 1984. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, NJ. 718 pp.Google Scholar
Zwick, R.W., and Fields, G.J.. 1978. Field and laboratory evaluations of fenvalerate against several insect and mite pests of apple and pear in Oregon. J. econ. Ent. 71: 793796.CrossRefGoogle Scholar