Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T03:48:34.895Z Has data issue: false hasContentIssue false

Effects of experimental harvesting on spider (Araneae) assemblages in boreal deciduous forests1

Published online by Cambridge University Press:  02 April 2012

Christopher M. Buddle*
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
David P. Shorthouse
Affiliation:
Department of Biological Sciences, CW-405A Biological Sciences Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
*
2Corresponding author (e-mail: [email protected]).

Abstract

Two large-scale forestry experiments, in Quebec (Sylviculture et aménagement forestiers écosystémique (SAFE)) and Alberta (Ecosystem Management by Emulating Natural Disturbance (EMEND)), were established in the late 1990s to test the effects of alternative silvicultural strategies (e.g., partial cutting) on biodiversity in northern boreal forests. We collected spiders in pitfall traps 2 years after the application of partial-cutting treatments in deciduous stands at EMEND and 6 years after similar treatments in deciduous stands at SAFE. Although we are aware of the challenges imposed by disparate locations and whole-scale experimental methods, our objective was to compare the effects of partial cutting on spider assemblages (diversity and community composition), and in doing so, to formulate a few general statements. Overall, 98 species (6107 individuals) were collected from Alberta and 86 species (3414 individuals) from Quebec. Of these, 44 species were common to both regions. Ordination and indicator-species analyses revealed a distinct effect of geographic separation: the spider assemblages in deciduous stands within the boreal plains ecoregion of Alberta and the boreal shield in Quebec were distinct. However, the effects of partial cutting on spider assemblages within each project were similar: removal of 25%–33% of trees shifted a characteristic old-growth fauna toward one more typical of clearcuts. Indicator-species analysis also revealed the dominance of wolf spider (Lycosidae) species in clearcuts within both experiments and we present evidence that clear-cutting homogenizes spider assemblages. Old-growth forests contain spider faunas that are easily disrupted by moderate partial cutting. In the face of intense harvesting practices, managing for the maintenance of biodiversity and conservation of spider faunas in northern forests will require retention of old-growth forests.

Résumé

Deux expériences forestières à grande échelle, au Québec (Sylviculture et aménagement forestier écosystémiques (SAFE)) et en Alberta (Ecosystem Management by Emulating Natural Disturbance (EMEND)), mises en branle à la fin des années 1990 cherchent à vérifier les effets de pratiques de sylviculture de rechange (c’est-à-dire, des coupes partielles) sur la biodiversité des forêts boréales nordiques. Nous avons récolté des araignées dans des pièges à fosse 2 ans après un traitement par coupe partielle dans des peuplements décidus dans le cadre d’EMEND et 6 ans après un traitement semblable dans des peuplements décidus dans le cadre de SAFE. Tout en étant conscients des problèmes générés par ces sites disparates et des méthodes expérimentales à grande échelle, notre objectif est de comparer les effets de la coupe partielle sur les communautés d’araignées (diversité et composition) et, par là, arriver à quelques conclusions générales. Globalement, nous avons récolté 98 espèces (6107 individus) en Alberta et 86 espèces (3414 individus) au Québec; de celles-ci, 44 espèces sont communes aux deux régions. Des ordinations et des analyses d’espèces indicatrices indiquent un net effet de la distance géographique: les communautés d’araignées des peuplements décidus dans l’écorégion des plaines boréales de l’Alberta et dans le bouclier laurentien boréal du Québec sont distinctes. Cependant, les effets de la coupe partielle sur les communautés d’araignées dans chacun des deux projets sont semblables: un retrait de 25 % – 33 % des arbres entraîne un remplacement de la faune typique des forêts anciennes par une faune plus caractéristique des zones de coupe à blanc. L’analyse des espèces indicatrices montre aussi une dominance des espèces d’araignées-loups (Lycosidae) dans les zones de coupe à blanc dans les deux expériences; nous présentons des preuves que la coupe à blanc tend à homogénéiser les communautés d’araignées. Les forêts anciennes contiennent des faunes d’araignées qui sont facilement perturbées par une coupe partielle modérée. Lors de l’utilization de méthodes de coupe à forte intensité, il sera nécessaire de préserver des forêts anciennes pour permettre un aménagement qui favorise le maintien de la diversité et la conservation des faunes d’araignées.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitchison, C.W., and Sutherland, G.D. 2000. Diversity of forest upland arachnid communities in Manitoba taiga (Araneae, Opiliones). Canadian Field-Naturalist, 114: 636651.CrossRefGoogle Scholar
Aitchison-Benell, C.W. 1994. Responses to fire by taiga spiders. Proceedings of the Entomological Society of Ontario, 125: 2941.Google Scholar
Angelstam, P.K. 1998. Maintaining and restoring biodiversity in European boreal forests by developing natural disturbance regimes. Journal of Vegetation Science, 9: 593602.Google Scholar
Bergeron, Y., Leduc, A., Harvey, B.D., and Gauthier, S. 2002. Natural fire regime: a guide for sustainable management of the Canadian boreal forest. Silva Fennica, 36: 8195.Google Scholar
Bonte, D., Vandenbroecke, N., Lens, L., and Maelfait, J.P. 2003. Low propensity for aerial dispersal in specialist spiders from fragmented landscapes. Proceedings of the Royal Society of London Series B: Biological Sciences, 270: 16011607.CrossRefGoogle ScholarPubMed
Brais, S., Harvey, B.D., Bergeron, Y., Messier, C., Greene, D., Belleau, A., and Parè, D. 2004. Testing forest ecosystem management in boreal mixedwoods of northwestern Québec: initial response of aspen stands to different levels of harvesting. Canadian Journal of Forest Research, 34: 431446.Google Scholar
Buddle, C.M. 2000. Life history of Pardosa moesta and Pardosa mackenziana (Araneae, Lycosidae) in central Alberta, Canada. Journal of Arachnology, 28: 319328.Google Scholar
Buddle, C.M. 2001. Spiders (Araneae) associated with downed woody material in deciduous forest in central Alberta, Canada. Agricultural and Forest Entomology, 3: 241251.CrossRefGoogle Scholar
Buddle, C.M., and Draney, M.L. 2004. Phenology of linyphiids in an old-growth deciduous forest in central Alberta, Canada. Journal of Arachnology, 32: 221230.Google Scholar
Buddle, C.M., Spence, J.R., and Langor, D.W. 2000. Succession of boreal forest spider assemblages following wildfire and harvesting. Ecography, 23: 424436.Google Scholar
Buddle, C.M., Beguin, J., Bolduc, E., Mercado, A., Sackett, T.E., Selby, R.D., Varady-Szabo, H., and Zeran, R.M. 2005. The importance and use of taxon sampling curves for comparative biodiversity research with forest arthropod assemblages. The Canadian Entomologist, 137: 120127.Google Scholar
Buddle, C.M., Langor, D.W., Pohl, G.R., and Spence, J.R. 2006. Arthropod responses to harvesting and wildfire: implications for emulation of natural disturbance in forest management. Biological Conservation, 128: 346357.Google Scholar
Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Austalian Journal of Ecology, 18: 117143.Google Scholar
Coddington, J.A., and Levi, H.W. 1991. Systematics and evolution of spiders (Araneae). Annual Review of Ecology and Systematics, 22: 565592.Google Scholar
Coyle, F.A. 1981. Effects of clearcutting on the spider community of a southern Appalachian forest. Journal of Arachnology, 9: 285298.Google Scholar
Dondale, C.D., and Redner, J.H. 1978. The crab spiders of Canada and Alaska (Araneae: Philodromidae and Thomisidae). Part 5. The insects and arachnids of Canada. Agriculture Canada, Ottawa, Ontario.Google Scholar
Dondale, C.D., and Redner, J.H. 1990. The wolf spiders, nurseryweb spiders, and lynx spiders of Canada and Alaska (Araneae: Lycosidae, Pisauridae, and Oxyopidae). Part 17. The insects and arachnids of Canada. Agriculture Canada, Ottawa, Ontario.Google Scholar
Dufrêne, M., and Legendre, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67: 345366.Google Scholar
Duvall, M.D., and Grigal, D.F. 1999. Effects of timber harvesting on coarse woody debris in red pine forests across the Great Lakes states, U.S.A. Canadian Journal of Forest Research, 29: 19261934.Google Scholar
Gotelli, N.J., and Colwell, R.K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4: 379391.Google Scholar
Gotelli, N.J., and Entsminger, G.L. 2006. EcoSim: null models software for ecology [online]. 7. Available from http://www.garyentsminger.com/ecosim/index.htm [accessed 20 February 2007].Google Scholar
Haila, Y., Hanski, I.K., Niemelä, J., Punttila, P., Raivio, S., and Tukia, H. 1994. Forestry and the boreal fauna: matching management with natural forest dynamics. Annales Zoologici Fennici, 31: 187202.Google Scholar
Huhta, V. 1971. Succession in the spider communities of the forest floor after clear-cutting and prescribed burning. Annales Zoologici Fennici, 8: 483542.Google Scholar
Hunter, M.L. Jr., 1993. Natural fire regimes as spatial models for managing boreal forests. Biological Conservation, 65: 115120.CrossRefGoogle Scholar
Jennings, D.T., Houseweart, M.W., Dondale, C.D., and Redner, J.H. 1988. Spiders (Araneae) associated with strip-clearcut and dense spruce–fir forests of Maine. Journal of Arachnology, 16: 5570.Google Scholar
Koponen, S. 1993. Ground-living spiders (Araneae) one year after fire in three subarctic forest types, Québec (Canada). Memoirs of the Queensland Museum, 33: 575578.Google Scholar
Koponen, S. 1995. Ground-living spiders (Araneae) of old forests in eastern Finland. Memoranda Societas pro Fauna et Flora Fennica, 71: 5762.Google Scholar
Koponen, S. 2005. Early succession of a boreal spider community after forest fire. Journal of Arachnology, 33: 230235.Google Scholar
Larrivée, M., Fahrig, L., and Drapeau, P. 2005. Effects of a recent wildfire and clearcuts on ground-dwelling boreal forest spider assemblages. Canadian Journal of Forest Research, 35: 25752588.CrossRefGoogle Scholar
Larsson, S., and Danell, K. 2001. Science and the management of boreal forest biodiversity. Scandinavian Journal of Forest Research, 3: 59.Google Scholar
Lawrence, K.L., and Wise, D.H. 2004. Unexpected indirect effect of spiders on the rate of litter disappearance in a deciduous forest. Pedobiologia, 48: 149157.CrossRefGoogle Scholar
Marusik, Y.M., and Koponen, S. 2002. Diversity of spiders in boreal and arctic zones. Journal of Arachnology, 30: 205210.CrossRefGoogle Scholar
McCune, B., and Grace, J. 2002. Analysis of ecological communities. MjM Software Design Gleneden Beach, Oregon.Google Scholar
McCune, B., and Mefford, M.J. 1999. PC-Ord: multivariate analysis of ecological data. MjM Software Design, Gleneden Beach, Oregon.Google Scholar
McGeoch, M.A. 1998. The selection, testing and application of terrestrial insects as bioindicators. Biological Reviews, 73: 181201.Google Scholar
McIver, J.D., Parsons, G.L., and Moldenke, A.R. 1992. Litter spider succession after clear-cutting in a western coniferous forest. Canadian Journal of Forest Research, 22: 984992.Google Scholar
Moulder, B.C., and Reichle, D.E. 1972. Significance of spider predation in the energy dynamics of forest-floor arthropod communities. Ecological Monographs, 42: 473498.Google Scholar
Niemelä, J., Pajunen, T., Haila, Y., Punttila, P., and Halme, E. 1994. Seasonal activity of boreal forest-floor spiders (Araneae). Journal of Arachnology, 22: 2331.Google Scholar
Niemelä, J., Haila, Y., and Punttila, P. 1996. The importance of small-scale heterogeneity in boreal forests: variation in diversity in forest-floor invertebrates across the succession gradient. Ecography, 19: 352368.Google Scholar
Pajunen, T., Haila, Y., Halme, E., Niemelä, J., and Punttila, P. 1995. Ground-dwelling spiders (Arachnida, Araneae) in fragmented old forests and surrounding managed forests in southern Finland. Ecography, 18: 6272.Google Scholar
Paquin, P., and Dupérré, N. 2003. Guide d'identification des Araignées (Araneae) du Québec. Fabreries Supplément 11.Google Scholar
Pearce, J.L., Venier, L.A., Eccles, G., Pedlar, J., and McKenney, D. 2004. Influence of habitat and microhabitat on epigeal spider (Araneae) assemblages in four stand types. Biodiversity and Conservation, 13: 13051334.CrossRefGoogle Scholar
Pickavance, J.R. 2001. Life-cycles of four species of Pardosa (Araneae, Lycosidae) from the island of Newfoundland, Canada. Journal of Arachnology, 29: 367377.Google Scholar
Shorthouse, D.P. 2007. The Nearctic spider database. Available at http://canadianarachnology.dyndns.org/ [accessed 20 February 2007].Google Scholar
Siitonen, J., Martikainen, P., Punttila, P., and Rauh, J. 2000. Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. Forest Ecology and Management, 128: 211225.Google Scholar
Simberloff, D. 1999. The role of science in the preservation of forest biodiversity. Forest Ecology and Management, 115: 101111.CrossRefGoogle Scholar
Spence, J.R., Buddle, C.M., Gandhi, K., Langor, D.W., Volney, W.J.A., Hammond, H.E.J., and Pohl, G.R. 1999. Invertebrate biodiversity, forestry and emulation of natural disturbance: a down-to-earth perspective. USDA Forest Service Technical Report PNW-GTR-461, Pacific Northwest Research Station, Portland, Oregon.Google Scholar
Spence, J.R., and Volney, W.J.A. 1999. EMEND Ecosystem Management Emulating Natural Disturbance. Sustainable Forest Management Network Project Report 14, Edmonton, Alberta.Google Scholar
Turnbull, A.L. 1973. Ecology of the true spiders (Araneomorphae). Annual Review of Entomology, 18: 305348.Google Scholar
Uetz, G.W., Halaj, J., and Cady, A.B. 1999. Guild structure of spiders in major crops. Journal of Arachnology, 27: 270280.Google Scholar
Varady-Szabo, H., and Buddle, C.M. 2006. On the relationships between ground-dwelling spider (Araneae) assemblages and dead wood in a northern sugar maple forest. Biodiversity and Conservation, 15: 41194141.Google Scholar
Vitousek, P.M., Mooney, H.A., Lubchenco, J., and Melillo, J.M. 1997. Human domination of earth's ecosystems. Science (Washington, D.C.), 277: 494499.Google Scholar
Wise, D.H. 1993. Spiders in ecological webs. Cambridge University Press, Cambridge, England.Google Scholar
Work, T.T., Buddle, C.M., Korinus, L.M., and Spence, J.R. 2002. Pitfall trap size and capture of three taxa of litter-dwelling arthropods: implications for biodiversity studies. Environmental Entomology, 31: 438448.Google Scholar
Work, T.T., Shorthouse, D.P., Spence, J.R., Volney, W.J.A., and Langor, D. 2004. Stand composition and structure of the boreal mixedwood and epigaeic arthropods of the Ecosystem Management Emulating Natural Disturbance (EMEND) landbase in northwestern Alberta. Canadian Journal of Forest Research, 34: 417430.Google Scholar