Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T11:06:13.571Z Has data issue: false hasContentIssue false

Effects of encapsulation on the toxicity of insecticides to the Oriental fruit moth (Lepidoptera: Tortricidae) and the predator Typhlodromus pyri (Acari: Phytoseiidae)

Published online by Cambridge University Press:  31 May 2012

M.K. Pogoda
Affiliation:
Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, PO Box 6000, 4902 Victoria Avenue North, Vineland Station, Ontario, Canada L0R 2E0
D.J. Pree*
Affiliation:
Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, PO Box 6000, 4902 Victoria Avenue North, Vineland Station, Ontario, Canada L0R 2E0
D.B. Marshall
Affiliation:
Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, PO Box 6000, 4902 Victoria Avenue North, Vineland Station, Ontario, Canada L0R 2E0
*
1 Author to whom all correspondence should be addressed.

Abstract

We assessed the effects of microencapsulation on the toxicity of chlorpyrifos, cypermethrin, and lambda-cyhalothrin to larvae of the Oriental fruit moth, Grapholita molesta (Busck), in the laboratory and the field. We also compared the toxicity of microencapsulated and traditional formulations to pyrethroid-susceptible and pyrethroid-resistant populations of the predaceous mite Typhlodromus pyri Scheuten in the laboratory. In laboratory bioassays with neonate larvae of G. molesta, the microencapsulated formulations of chlorpyrifos and cypermethrin were less toxic than the wettable-powder and emulsifiable-concentrate formulations. The emulsifiable-concentrate and microencapsulated formulations of lambda-cyhalothrin were equally toxic. In the field, all trees in insecticide-treated plots contained less damage by first generation G. molesta larvae than unsprayed controls. In the second generation, the microencapsulated formulations of cypermethrin and chlorpyrifos were generally less effective than the emulsifiable-concentrate formulation of cypermethrin. The microencapsulated formulation of lambda-cyhalothrin was as effective as the emulsifiable-concentrate formulation. The microencapsulated formulation of cypermethrin was less toxic than the emulsifiable-concentrate formulation to both pyrethroid-susceptible and pyrethroid-resistant populations of T. pyri. Both populations were highly resistant to chlorpyrifos and unaffected by either formulation. The microencapsulated formulation of lambda-cyhalothrin affected the two populations of T. pyri differently; the microencapsulated formulation was approximately fivefold more toxic than the emulsifiable-concentrate formulation to the pyrethroid-susceptible population, but sixfold less toxic than the emulsifiable-concentrate formulation to the pyrethroid-resistant population. Much of the selectivity reported for the microencapsulated formulations of cypermethrin and chlorpyrifos appeared related to a general reduction in toxicity to both target insects and beneficial mites. The microencapsulated lambda-cyhalothrin was as toxic as the emulsifiable-concentrate formulation to the target insect but was less toxic than the emulsifiable concentrate to pyrethroid-resistant predator mites. This limited increased selectivity may be useful where resistant populations of predators occur.

Résumé

Nous avons évalué les effets de la microencapsulation sur la toxicité des insecticides chlorpyrifos, cyperméthrine et lambda-cyhalothrine chez les larves de la Tordeuse orientale du pêcher, Grapholita molesta (Busck), en laboratoire et en nature. Nous avons également comparé la toxicité des préparations microencapsulées et traditionnelles sur des populations sensibles aux pyréthroïdes et des populations résistantes de l’acarien prédateur Typhlodromus pyri Scheuten en laboratoire. En laboratoire, lors des expériences sur des larves néonates de G. modesta, les préparations microencapsulées de chlorpyrifos et de cyperméthrine se sont avérées moins toxiques que la poudre hydrosoluble et la préparation concentrée émulsifiable. La préparation microencapsulée de lambda-cyhalothrine était aussi efficace que la préparation concentrée émulsifiable. Sur le terrain, tous les arbres des parcelles traitées à l’insecticide ont subi moins de dommages causés par les larves de première génération de G. molesta que les témoins non traités. Pour la seconde génération, les préparations microencapsulées de cyperméthrine et de chlorpyrifos étaient généralement moins efficaces que la préparation concentrée émulsifiable de cyperméthrine. La préparation microencapsulée de lambda-cyhalothrine était tout aussi efficace que la préparation concentrée émulsifiable. La préparation microencapsulée de cyperméthrine était moins toxique que la préparation concentrée émulsifiable aussi bien chez les populations de T. pyri sensibles que chez les populations résistantes aux pyréthroïdes. Les deux populations étaient très résistantes au chlorpyrifos et elles n’ont été affectées par ni l’une ni l’autre des préparations. La préparation microencapsulée de lambda-cyhalothrine affectait différemment les deux populations de T. pyri. La préparation encapspulée s’est avérée approximativement cinq fois plus toxique que la préparation concentrée émulsifiable chez la population sensible aux pyréthroïdes, mais six fois moins toxique que la préparation concentrée pour la population résistante. Une grande partie de la sélectivité observée dans le cas des préparations microencapsulées de cyperméthrine et de chlorpyrifos semble reliée à une réduction générale de la toxicité pour le deux groupes d’insectes ciblés aussi bien que pour les acariens bénéfiques. La préparation microencapsulée de lambda-cyhalothrine était aussi toxique que la préparation concentrée émulsifiable pour l’insecte cible, mais l’était moins que la préparation concentrée émulsifiable pour les acariens prédateurs résistants aux pyréthroïdes. Cette sélectivité accrue de façon limitée peut être utile là où il y a des populations de prédateurs résistants.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asquith, D., Hull, L.A., Travis, J.W., Mowry, P.D. 1976. Apple, tests of insecticides 1975. Insecticide and Acaricide Tests, Miscellaneous Publications of the Entomological Society of America 1: 17–9CrossRefGoogle Scholar
Carlson, E.C. 1975. Pesticides for controlling sunflower moth larvae. California Agriculture 29: 12–3Google Scholar
Croft, B.A. (Editor). 1990. Arthropod biological control agents and pesticides. Toronto: John Wiley & SonsGoogle Scholar
Hardman, J.M., Rogers, M.L., Gaul, S.O., Bent, E.D. 1997. Insectary rearing and initial testing in Canada of an organophosphate/pyrethroid-resistant strain of the predator mite Typhlodromus pyri (Acari: Phytoseiidae) from New Zealand. Environmental Entomology 26: 1424–36CrossRefGoogle Scholar
Hodgson, E., Kuhr, R.J. (Editors). 1990. Safer insecticides: development and use. New York: Marcel Dekker, IncGoogle Scholar
Hull, L.A. 1979. Apple, tests of insecticides 1978. Insecticide and Acaricide Tests, Miscellaneous Publications of the Entomological Society of America 4: 20–2CrossRefGoogle Scholar
Hull, L.A., Beers, E.H. 1985. Ecological selectivity: modifying chemical control practices to preserve natural enemies. pp 103–22 in Hoy, M.A. and Herzog, D.C. (Eds), Biological control in agricultural IPM systems. Toronto: Academic Press, IncCrossRefGoogle Scholar
Lester, P.J., Pogoda, M.K., Pree, D.J. 1998. Insecticide encapsulation to maintain predatory mite populations, reduce European red mite outbreaks, and control of the Oriental fruit moth Grapholitha molesta (Busck). Proceedings of the Entomological Society of Ontario 129: 137–48Google Scholar
Lester, P.J., Pree, D.J., Thistlewood, H.M.A., Trevisan, L.M., Harmsen, R. 1999. Pyrethroid encapsulation for conservation of acarine predators and reduced spider mite (Acari: Tetranychidae) outbreaks in apple orchards. Environmental Entomology 28: 7280CrossRefGoogle Scholar
Marshall, D.B., Thistlewood, H.M.A., Lester, P.J. 2001. Release, establishment, and movement of the predator Typhlodromus pyri (Acari: Phytoseiidae) on apple. The Canadian Entomologist 133: 279–92CrossRefGoogle Scholar
Pree, D.J. 1979. Toxicity of phosmet, azinphosmethyl, and permethrin to the Oriental fruit moth and its parasite, Macrocentrus ancylivorus. Environmental Entomology 8: 969–72CrossRefGoogle Scholar
Pree, D.J. 1985. Grapholita molesta. pp 307–11 in Singh, P. and Moore, R.F. (Eds), Handbook of insect rearing. Volume 2. Amsterdam: Elsevier Science Publishers BVGoogle Scholar
Pree, D.J., Herne, D.C.H., Phillips, J.H.H., Roberts, W.P. 1983. Pest management program for peach series: Oriental fruit moth. Ontario Ministry of Agriculture and Food Agdex 212/624 83–027Google Scholar
Pree, D.J., Whitty, K.J., Van Driel, L., Walker, G.M. 1998. Resistance to insecticides in Oriental fruit moth populations (Grapholita molesta) from the Niagara Peninsula of Ontario. The Canadian Entomologist 130: 245–56CrossRefGoogle Scholar
Raymond, M., Heckel, D.G., Scott, J.G. 1989. Interactions between pesticide genes: model and experiment. Genetics 123: 543–51CrossRefGoogle ScholarPubMed
Rice, R.E., Barnett, W.W., Flaherty, D.L., Bentley, W.J., Jones, R.A. 1982. Monitoring and modeling Oriental fruit moth in California. California Agriculture 36: 11–2Google Scholar
Robertson, J.L., Priesler, H.K. 1992. Pesticide bioassays with arthropods. Boca Raton, Florida: CRC PressGoogle Scholar
Scher, H.B., Rodson, M., Lee, K-S. 1998. Microencapsulation of pesticides by interfacial polymerization utilizing isocyanate or aminoplast chemistry. Pesticide Science 54: 3944003.0.CO;2-S>CrossRefGoogle Scholar
Solymar, B. 1999. Integrated pest management for Ontario apple orchards. Ontario Ministry of Agriculture, Food and Rural Affairs Publication 310Google Scholar
Thistlewood, H.M.A., Pree, D.J., Crawford, L.A. 1992. Comparison of slide dip and petri dish assays for measuring resistance to permethrin in Amblyseius fallacis (Acari: Phytoseiidae). Journal of Economic Entomology 85: 2051–7CrossRefGoogle Scholar