Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T09:23:47.120Z Has data issue: false hasContentIssue false

EFFECTS OF CONSTANT AND FLUCTUATING TEMPERATURES ON IMMATURE DEVELOPMENT AND AGE-SPECIFIC LIFE TABLES OF RHOPALOSIPHUM PADI (L.) (HOMOPTERA: APHIDIDAE)

Published online by Cambridge University Press:  31 May 2012

N.C. Elliott
Affiliation:
Northern Grain Insects Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Brookings, South Dakota, USA57006
R.W. Kieckhefer
Affiliation:
Northern Grain Insects Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Brookings, South Dakota, USA57006

Abstract

Relationships between temperature and immature developmental rates of apterous and alate Rhopalosiphum padi (L.) were determined in laboratory experiments conducted at constant and fluctuating temperatures. Lower and upper thresholds for development were 5.78 and 25.09 °C, respectively. Studies at fluctuating temperatures which simulated average and extreme low and high temperatures occurring during late-spring in eastern South Dakota were conducted to determine developmental rates and age-specific life table statistics. Developmental rates for cohorts exposed to variable temperatures were similar to expected developmental rates determined from constant temperature studies. Age-specific life table statistics differed among alate and apterous R. padi exposed to identical temperature regimes. On a day time scale, population growth rates of either morph increased with increasing temperature. When data were expressed on a degree-day time scale, population growth rates were similar for cohorts of either morph exposed to low and average temperature regimes. Population growth rates declined for cohorts of both morphs exposed to high temperatures. Equations were provided that estimate age-specific survival and natality for fluctuating temperatures. Stable nymphal instar distributions for apterous R. padi were similar at all temperatures; for populations with stable age structures, approximately 55, 15, 10, 7, and 10% of individuals would be first, second, third, and fourth nymphal instars, and adults, respectively.

Résumé

On a étudié les relations entre la température et le taux de développement des aptères et des ailées de Rhopalosiphum padi (L.) par des expériences de laboratoire à température constante ou fluctuante. Les seuils thermiques inférieur et supérieur étaient de 5,78 et 25,09 °C, respectivement. Des études sous températures fluctuantes simulant des moyennes et des extrêmes normales à la fin du printemps dans l’est du Dakota Sud, ont permis de déterminer les taux de développement et les paramètres des tables de survie. Les taux de développement de cohortes exposées à des températures variables étaient similaires à ceux obtenus des tests à température constante. Les statistiques vitales de l’âge différaient entre les ailées et les aptères élevées sous un même régime thermique. Sur l’échelle de temps absolu, les taux d’accroissement numérique de l’une et l’autre morphe augmentaient avec la température. Sur l’échelle de temps exprimé en degré-jours, les taux d’accroissement étaient semblables pour des cohortes de l’une ou l’autre morphe exposées aux régimes thermiques de basse et moyenne températures. Les taux d’accroissement ont diminué pour les cohorts des deux morphes exposées à des températures élevées. Des équations sont fournies pour estimer la survie et la natalité spécifique de l’âge à température fluctuante. Les distributions stables des stades immatures pour les aptères étaient identiques à toutes les températures : les populations avec une structure d’âge stable seraient composées approximativement de 55, 15, 10, 7 et 10% d’individus des stades 1, 2, 3, 4 et adulte, respectivement.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.C. 1976. A modified sine wave method for calculating degree-days. Environ. Ent. 5: 388396.CrossRefGoogle Scholar
Birch, L.C. 1948. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 17: 1526.CrossRefGoogle Scholar
Blackman, R.L., and Eastop, V.F.. 1984. Aphids on the World's Crops: An Identification and Information Guide. Wiley and Sons, New York.Google Scholar
Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., and Mackauer, M.. 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11: 431438.CrossRefGoogle Scholar
Curry, G.L., and Feldman, R.M.. 1987. Mathematical Foundations of Population Dynamics. Texas A&M Univ. Press, College Station.Google Scholar
Dean, G.J. 1974. Effect of temperature on the cereal aphids Metopolophium dirhodum (Wlk.), Rhopalosiphum padi (L.), and Macrosiphum avenae (F.) (Hem., Aphididae). Bull. ent. Res. 63: 401409.CrossRefGoogle Scholar
Gilbert, N., Gutierrez, A.P., Frazer, B.D., and Jones, R.E.. 1976. Ecological Relationships. W.H. Freeman, San Francisco.Google Scholar
Graf, B., Baumgartner, J., and Delucchi, V.. 1985. Life table statistics of three apple aphids, Dysaphis plantaginea, Rhopalosiphum insertum, and Aphids pomi (Homoptera: Aphididae), at constant temperatures. Z. Ang. Ent. 99: 285294.CrossRefGoogle Scholar
Hutchison, W.D., and Hogg, D.B.. 1984. Demographic statistics for the pea aphid (Homoptera: Aphididae) in Wisconsin and a comparison with other populations. Environ. Ent. 13: 11731181.CrossRefGoogle Scholar
Kuroli, G. 1984. Laboratory investigation of the ontogenesis of oat aphid (Rhopalosiphum padi L.). Z. Ang. Ent. 97: 7176.CrossRefGoogle Scholar
Meyer, J.S., Ingersoll, C.G., McDonald, L.L., and Boyce, M.S.. 1986. Estimating uncertainty in population growth rates: jackknife vs. bootstrap techniques. Ecology 67: 11561166.CrossRefGoogle Scholar
SAS Institute. 1985. SAS User's Guide: Statistics. SAS Institute, Cary, NC.Google Scholar
Taylor, F. 1981. Ecology and evolution of physiological time in insects. Am. Natur. 117: 123.CrossRefGoogle Scholar
Villanueva, J.R., and Strong, F.E.. 1964. Laboratory studies on the biology of Rhopalosiphum padi (Homoptera: Aphididae). J. econ. Ent. 57: 609613.Google Scholar
Walgenbach, D.D., Elliott, N.C., and Kieckhefer, R.W.. 1988. Constant and fluctuating temperature effects on developmental rates and life table statistics of the greenbug (Homoptera: Aphididae). J. econ. Ent. 81: 501507.CrossRefGoogle Scholar
Wratten, D.S. 1977. Reproductive strategy of winged and wingless morphs of the aphids Sitobion avenae and Metopolophium dirhodum. Ann. Appl. Biol. 85: 319331.CrossRefGoogle ScholarPubMed