Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T10:35:43.476Z Has data issue: false hasContentIssue false

EFFECTIVENESS OF THE SECOND MATING IN A BISEXUAL TRICHOGRAMMA SPECIES AND THE FIRST MATING IN A THELYTOKOUS TRICHOGRAMMA SPECIES (HYMENOPTERA: TRICHOGRAMMATIDAE)

Published online by Cambridge University Press:  31 May 2012

Bernard Pintureau
Affiliation:
INSA, UA INRA 203, Laboratoire de Biologie appliquée, Bâtiment 406, 20 avenue A. Einstein, 69 621-Villeurbanne-cedex, France
M. Del Pilar Iglesias Calvin
Affiliation:
INSA, UA INRA 203, Laboratoire de Biologie appliquée, Bâtiment 406, 20 avenue A. Einstein, 69 621-Villeurbanne-cedex, France
Simon Grenier
Affiliation:
INSA, UA INRA 203, Laboratoire de Biologie appliquée, Bâtiment 406, 20 avenue A. Einstein, 69 621-Villeurbanne-cedex, France

Abstract

A chromatic mutation, dark body (mutants with a darker body than wild individuals), allowed us to test the effectiveness of the second mating in the bisexual species Trichogramma turkestanica Meyer, and of the first mating in the thelytokous species T. cordubensis Vargas and Cabello. Second mating in T. turkestanica was mostly efficient (i.e. followed by fertilization). Nevertheless, the latency before the second mating was longer as the time between second and first matings increased. The utilization of the spermatozoa from the second mating increased as the stock of spermatozoa from the first mating decreased. A long time in the presence of a male was necessary to obtain mating of the thelytokous females of T. cordubensis. Such fertilized females produced a low percentage (28%) of daughters from bisexual reproduction.

Résumé

Une mutation à effet chromatique, «dark body» (mutants ayant un corps plus sombre que celui des individus sauvages), a permis de tester l’efficacité du 2ème accouplement chez l’espèce Trichogramma turkestanica Meyer à reproduction bisexuée et l’efficacité du 1er accouplement chez l’espèce T. cordubensis Vargas et Cabello à reproduction thélytoque. Chez T. turkestanica, le 2ème accouplement est possible et le plus souvent efficace (i.e. suivi par une fécondation). Il est toutefois d’autant plus difficile à obtenir que le temps écoulé depuis le 1er accouplement est long. L’utilisation des spermatozoïdes du 2ème accouplement augmente au fur et à mesure que le stock de spermatozoïdes issus du 1er accouplement se réduit. Chez T. cordubensis, les femelles thélytoques peuvent être fécondées. Toutefois, elle n’acceptent l’accouplement qu’après une longue période de mise en présence avec un mâle. Ces femelles fécondées donnent un pourcentage relativement faible (28%) de filles issues de la sexualité.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, G.R., Kazmer, D.J., and Luck, R.F.. 1994. Post-copulatory male behaviour, sperm precedence and multiple mating in a solitary parasitoid wasp. Animal Behaviour 48: 635644.CrossRefGoogle Scholar
Assem, J. van den. 1985. Mating behaviour in parasitic wasps. pp. 137167in Waage, J., and Greathead, D. (Eds.), Insect Parasitoids. Academic Press, London.Google Scholar
El Agoze, M., Poirié, M., and Périquet, G.. 1995. Precedence of the first male sperm in successive matings in the Hymenoptera Diadromus pulchellus. Entomologia experimentalis et applicata 75: 251255.CrossRefGoogle Scholar
Houseweart, M.W., Jennings, D.T., Welty, C., and Southard, S.G.. 1983. Progeny production by Trichogramma minutum (Hymenoptera: Trichogrammatidae) utilizing eggs of Choristoneura fumiferana (Lepidoptera: Tortricidae) and Sitotroga cerealella (Lepidoptera: Gelechiidae). The Canadian Entomologist 115: 12451252.CrossRefGoogle Scholar
Louis, C., Pintureau, B., and Chapelle, L.. 1993. Recherches sur l'origine de l'unisexualité: La thermothérapie élimine à la fois rickettsies et parthénogenèse thélytoque chez un Trichogramme (Hym., Trichogrammatidae). Comptes Rendus de l'Académie des Sciences de Paris, série III 316: 2733.Google Scholar
Neto, L. 1996. Interactions génétiques entre les Trichogrammes (Hym. Trichogrammatidae) et leurs hôtes. Rôle d'un symbiote. Thesis, INSA-Lyon. 180 pp.Google Scholar
Neto, L., and Pintureau, B.. 1995. Taxonomic study of a population of Trichogramma turkestanica discovered in southern Portugal (Hymenoptera: Trichogrammatidae). Annales de la Société entomologique de France (Nouvelle Série) 31: 2130.CrossRefGoogle Scholar
Pinto, J.D., and Stouthamer, R.. 1994. Systematics of the Trichogrammatidae with emphasis on Trichogramma. pp. 136in Wajnberg, E., and Hassan, S.A. (Eds.), Biological Control with Egg Parasitoids. Cab International, Oxon, UK.Google Scholar
Pintureau, B. 1994 a. Phylogenetic study of the European species of the genus Trichogramma Westwood (Hymenoptera: Trichogrammatidae). Trends in Agricultural Science, Entomology 2: 141150.Google Scholar
Pintureau, B. 1994 b. Frequency and geographical distribution of thelytokous parthenogenesis in European species of Trichogramma (Hym.: Trichogrammatidae). Norwegian Journal of Agricultural Science 16 (suppl.): 411.Google Scholar
Pintureau, B., Louis, C., and Chapelle, L.. 1993. Symbiose entre microorganismes et Trichogrammes (Hym. Trichogrammatidae): Intérêt pour la lutte biologique. Bulletin de la Société zoologique de France 118: 159167.Google Scholar
Rössler, Y., and De Bach, P.. 1973. Genetic variability in the thelytokous form of Aphytis mytilaspidis. Hilgardia 42: 149175.CrossRefGoogle Scholar
Rousset, F., Bouchon, D., Pintureau, B., Juchault, P., and Solignac, M.. 1992. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proceedings of the Royal Society of London, Series B 250: 9198.Google ScholarPubMed
Stouthamer, R. 1993. The use of sexual versus asexual wasps in biological control. Entomophaga 38: 36.CrossRefGoogle Scholar
Stouthamer, R., Breeuwer, J.A.J., Luck, R.F., and Werren, J.H.. 1993. Molecular identification of microorganisms associated with parthenogenesis. Nature 361: 6668.CrossRefGoogle ScholarPubMed
Stouthamer, R., and Kazmer, D.J.. 1994. Cytogenetics of microbe-associated parthenogenesis and its consequences for gene flow in Trichogramma wasps. Heredity 73: 317327.CrossRefGoogle Scholar
Stouthamer, R., and Luck, R.F.. 1993. Influence of microbe-associated parthenogenesis on the fecundity of Trichogramma deion and T. pretiosum. Entomologia experimentalis et applicata 67: 183192.CrossRefGoogle Scholar
Stouthamer, R., Luck, R.F., Hamilton, W.D.. 1990. Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. Proceedings of the National Academy of Sciences of the USA 87: 24242427.CrossRefGoogle ScholarPubMed
Stouthamer, R., Lükö, S., and Mak, F.. 1994. Influence of parthenogenesis Wolbachia on host fitness. Norwegian Journal of Agricultural Science 16 (suppl.): 117122.Google Scholar
Stouthamer, R., and Werren, J.H.. 1993. Microbes associated with parthenogenesis in wasps of the genus Trichogramma. Journal of Invertebrate Pathology 61: 69.CrossRefGoogle Scholar
Vu Quang Con. 1986. Influence of oviposition rate, egg distribution density, and stage of embryonal development of the host on the sex ratio of Trichogramma japonicum Ashmead (Hymenoptera, Trichogrammatidae). Entomological Review 65: 2332.Google Scholar
Zchori-Fein, E., Roush, R.T., and Hunter, M.S.. 1992. Male production induced by antibiotic treatment in Encarsia formosa (Hymenoptera: Aphelinidae), an asexual species. Experientia 48: 102105.CrossRefGoogle Scholar