Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-30T23:25:02.134Z Has data issue: false hasContentIssue false

EFFECT OF SUBLETHAL INFECTION LEVELS OF NOSEMA SP. ON THE PHEROMONE-MEDIATED BEHAVIOR OF THE WESTERN SPRUCE BUDWORM, CHORISTONEURA OCCIDENTALIS FREEMAN (LEPIDOPTERA: TORTRICIDAE)

Published online by Cambridge University Press:  31 May 2012

J.D. Sweeney
Affiliation:
Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1W5
J.A. McLean
Affiliation:
Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1W5

Abstract

Western spruce budworm, Choristoneura occidentalis Freeman, adult males were observed in a wind tunnel for their response to synthetic sex pheromone and subsequently examined to determine their degree of infection with a microsporidian parasite, Nosema sp. A subsample of C. occidentalis was randomly selected and electroantennograms (EAG) of individual moths were measured for response to pheromone. The Nosema infection level ranged from 0 to 21.8 × 106 spores per milligram and was significantly negatively correlated with the proportion of males wing-fanning, taking off, and flying upwind to contact the pheromone source. The level of Nosema infection and the amplitude of the antennal response (EAG) to pheromone were not significantly related. These results suggest that Nosema affects the response of C. occidentalis males to pheromone in some way other than directly reducing the sensitivity of the antennae. We hypothesize that sublethal infections of Nosema sp. may reduce mating success of the western spruce budworm in field populations.

Résumé

La réponse des mâles de la tordeuse occidentale de l’épinette Choristoneura occidentalis Freeman à une phéromone sexuelle synthétique a été suivie dans un tunnel aérodynamique afin de déterminer leur degré d’infection par un parasite microsporidien, Nosema sp. Un sous-échantillon de C. occidentalis a été choisi au hasard et des mesures d’électroantennogrammes (EAG) individuels ont été faites pour établir la réponse des papillons à la phéromone. Le niveau d’infection par Nosema a varié de 0 à 21,8 × 106 spores par mg; il s’est avéré inversement corrélé avec la proportion des mâles qui vibraient des ailes, prenaient leur envol et volaient à contre-courant vers la source de phéromone. Le niveau d’infection par Nosema et l’amplitude de la réponse antennaire (EAG) à la phéromone n’étaient pas significativement liés. Ces résultats indiquent que Nosema affecte la réponse des mâles de C. occidentalis à la phéromone sans directement réduire la sensibilité de l’antenne. Nous proposons que des infections sublétales par Nosema sp. peuvent réduire l’incidence d’accouplement dans les populations naturelles de la tordeuse occidentale de l’épinette.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angerilli, N., and McLean, J.A.. 1984. Windtunnel and field observations of western spruce budworm responses to pheromone baited traps. J. ent. Soc. B.C. 79: 1016.Google Scholar
Bailey, L. 1963. Infectious diseases of the honey bee. Land Books Ltd., London. 176 pp.Google Scholar
Boller, E. 1972. Behavioral aspects of mass-rearing of insects. Entomophaga 17: 925.CrossRefGoogle Scholar
Burke, J.M. 1980. A survey of micro-organisms infecting a spruce budworm population. Dep. Environ., Can. For. Serv., For. Pest Mgmt. Inst., Inf. Rep. FPM-X-37. 9 pp.Google Scholar
Cantwell, G.E. 1970. Standard methods for counting Nosema spores. Am. Bee J. 110: 222223.Google Scholar
Cory, H.T., Daterman, G.E., Daves, G.D. Jr., Sower, L.L., Shepherd, R.F., and Sanders, C.F.. 1982. Chemistry and field evaluation of the sex pheromone of western spruce budworm, Choristoneura occidentalis, Freeman. J. Chem. Ecol. 8: 339350.CrossRefGoogle ScholarPubMed
Daterman, G.E. 1974. Synthetic sex pheromone for detection survey of European pine shoot moth. U.S. Dep. Agric. For. Serv. Res. Pap. PNW-180. 12 pp.Google Scholar
Fletcher, L.W., Claborn, H.V., Turner, J.P., and Lorez, E.. 1968. Difference in response of two strains of screwworm flies to male pheromones. J. econ. Ent. 61: 13861388.CrossRefGoogle Scholar
Gaugler, R.R., and Brooks, W.M.. 1975. Sublethal effects of infection by Nosema heliothidis in the corn earworm, Heliothis zea. J. Invertebr. Pathol. 26: 5763.CrossRefGoogle Scholar
Hsiao, T.H., and Hsiao, C.. 1973. Benomyl: a novel drug for controlling a microsporidian disease of the alfalfa weevil. J. Invertebr. Pathol. 22: 303304.CrossRefGoogle Scholar
Huettel, M.D. 1976. Monitoring the quality of laboratory-reared insects: a biological and behavioral perspective. Environ. Ent. 5: 807814.CrossRefGoogle Scholar
Jones, J. 1984. Use, misuse, and role of multiple-comparison procedures in ecological and agricultural entomology. Environ. Ent. 13: 635649.CrossRefGoogle Scholar
Malone, L.A., and Wigley, P.J.. 1981. Quantitative studies on the pathogenicity of Nosema carpocapsae, a microsporidian pathogen of the codling moth, Cydia pomonella, in New Zealand. J. Invertbr. Pathol. 38: 330334.CrossRefGoogle Scholar
Minks, A.K. 1971. Decreased sex pheromone production in an in-bred stock of the summerfruit tortrix moth, Adoxophyes orana. Entomologia exp. appl. 14: 361364.CrossRefGoogle Scholar
Nolan, R.A., and Clovis, C.J.. 1985. Nosema fumiferanae release into the gut of the larvae of the eastern spruce budworm (Choristoneura fumiferana). J. Invertebr. Pathol. 45: 112114.CrossRefGoogle Scholar
Perez, D., and Rozas, R.. 1984. An inexpensive and reliable electroantennometer with automatic base line offset and drift canceller. Physiol. Ent. 9: 433436.CrossRefGoogle Scholar
Richerson, J.V., and Cameron, E.A.. 1974. Differences in pheromone release and sexual behavior between laboratory-reared and wild gypsy moth adults. Environ. Ent. 3: 475481.CrossRefGoogle Scholar
Robertson, J.L. 1985. Choristoneura occidentalis and Choristoneura fumiferana. pp. 227–236 in Singh, P., and Moore, R.F. (Eds.), Handbook of Insect Rearing, Volume 2. Elsevier, Amsterdam. 514 pp.Google Scholar
Roelofs, W.L. 1977. The scope and limitations of the electroantennogram technique in identifying pheromone components. pp. 147–165 in McFarlane, N.R. (Ed.), Crop Protection Agents—Their Biological Evaluation. Academic Press. London. 638 pp.Google Scholar
Silk, P.J., Weisner, C.J., Tan, S.H., Ross, R.J., and Grant, G.G.. 1982. Sex pheromone chemistry of the western spruce budworm, Choristoneura occidentalis Free. J. Chem. Ecol. 8: 351362.CrossRefGoogle Scholar
Sower, L.L., Hagstrom, D.W., and Long, J.S.. 1973. Comparison of the female pheromones of a wild and a laboratory strain of Cadra cautella, and a male responsiveness to the pheromone extracts. Ann. ent. Soc. Am. 66: 484485.CrossRefGoogle Scholar
Stock, M.W., and Robertson, J.L.. 1982. Quality assessment and control in a western spruce budworm laboratory colony. Entomologia exp. appl. 32: 2832.CrossRefGoogle Scholar
Thomson, H.M. 1958. The effect of a microsporidian parasite on the development, reproduction and mortality of the spruce budworm, Choristoneura fumiferana (Clem.). Can. J. Zool. 36: 499511.CrossRefGoogle Scholar
Wilson, G.G. 1976. A method for mass producing spores of the microsporidian Nosema fumiferana in its host, the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Ent. 108: 383386.CrossRefGoogle Scholar
Wilson, G.G. 1977. The effects of feeding microsporidian (Nosema fumiferana) spores to naturally infected spruce budworm (Choristoneura fumiferana). Can. J. Zool. 55: 249250.CrossRefGoogle Scholar
Wilson, G.G. 1980. Effects of Nosema fumiferanae (Microsporida) on rearing stock of spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Proc. ent. Soc. Ont. 111: 115116.Google Scholar
Wilson, G.G. 1982. Protozoans for insect control. pp. 587–600 in Kurstak, E. (Eds.), Microbial and Viral Pesticides. Marcel Dekker Inc., New York. 720 pp.Google Scholar
Wilson, G.G. 1983. A dosing technique and the effects of sub-lethal doses of Nosema fumiferanae (Microsporida) on its host the spruce budworm, Choristoneura fumiferana. Parasitology 87: 371376.CrossRefGoogle Scholar
Wilson, G.G. 1985. Dosage-mortality response of Choristoneura fumiferana (Clem.) to a microsporidium, Nosema fumiferanae. Dep. Environ., Can. For. Serv., For. Pest Mgmt. Inst., Inf. Rep. FPM-X-68. 7 pp.Google Scholar
Windels, M.B., Chiang, H.C., and Furgula, B.. 1976. Effects of Nosema pyrausta on pupa and adult stages of the European corn borer Ostrinia nubilalis. J. Invertebr. Pathol. 27: 239242.CrossRefGoogle Scholar
Zimmack, H.L., Arbuthnot, K.D., and Brindley, T.A.. 1954. Distribution of the European corn borer parasite Perezia pyraustae, and its effects on the host. J. econ. Ent. 47: 641645.CrossRefGoogle Scholar