Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T11:26:01.176Z Has data issue: false hasContentIssue false

EFFECT OF LIGHT ON CHANGES IN MAIZE RESISTANCE AGAINST THE EUROPEAN CORN BORER, OSTRINIA NUBILALIS (HÜBNER)

Published online by Cambridge University Press:  31 May 2012

D.J. Bergvinson
Affiliation:
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
J.S. Larsen
Affiliation:
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
J.T. Arnason
Affiliation:
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

Abstract

The herbivore-resistant synthetic maize BS9 (C4) was grown in three environments, namely, greenhouse with reduced UV light, greenhouse with supplemental UV light, and outside, and leaves at the three-, five-, seven-, nine-, and 10-leaf stages of development were fed to the European corn borer, Ostrinia nubilalis (Hübner). Larvae preferred younger leaves, and leaves grown under reduced UV light, in spite of the high levels of the defence compound 2,4-dihydroxy-7-methoxy-2H-1,4 benzoxazin-3 (4H)-one (DIMBOA). The low level of feeding on leaves from plants grown outside was associated with increased toughness and increased photochemically derived phenolic dimers that cross-link hemicellulose. Tender young maize plants have a low level of cell wall phenolics and depend on a toxin (DIMBOA) for defence. In older plants, DIMBOA levels are low, leaves are tough, and resistance is largely structure-based.

Résumé

Du maïs synthétique résistant aux herbivores, BS9 (C4), a été cultivé dans trois milieux différents, une serre à éclairage UV réduit, une serre à éclairage UV augmenté et une terre à l’extérieur et des feuilles de ces cultures aux stades trois, cinq, sept, neuf et 10 feuilles ont été données en nourriture à des Vers de l’épi de maïs, Ostrinia nubilalis (Hübner). Les larves ont montré une préférence pour les jeunes feuilles et pour les feuilles de la serre à éclairage UV réduit, en dépit des concentrations élevées du composé de défense 2,4-dihydroxy-7-méthoxy-2H-1,4 benzoxazin-3 (4H)-one (DIMBOA) dans les plantes. La faible consommation de feuilles des plant cultivés à l’extérieur était reliée à leur rigidité accrue et à l’augmentation de la concentration de dimères phénoliques, générés par photochimie, qui se lient à l’hémicellulose. Les jeunes plants tendres de maïs ont une faible concentration de produits phénolés dans leurs parois cellulaires et une toxine (DIMBOA) assure leur résistance. Chez les plants plus âgés, les concentrations de DIMBOA sont faibles, les feuilles sont coriaces et la résistance est surtout due à des facteurs structuraux.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akin, D.E., Ames-Gottfred, N., Hartley, R.D., Fulcher, R.G., and Rigsby, L.L.. 1990. Microspectrophotometry of phenolic compounds in bermudagrass cell walls in relation to rumen microbial digestion. Crop Science 30: 396401.CrossRefGoogle Scholar
Ascher, K.R.S., Schmutterer, H., Glotter, E., and Kirson, I.. 1981. Withanolides and related ergostane-type steroids as antifeedants for larvae of Epilachna varivestis (Coleoptera: Chrysomelidae). Phytoparasitica 9: 197205.CrossRefGoogle Scholar
Atkinson, J., Morand, P., Arnason, J.T., Niemeyer, H.M., and Bravo, H.R.. 1991. Analogues of the cyclic hydroxamic acid 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one: Decomposition to benzoxazolinones and reaction with ß-mercaptoethanol. Journal of Organic Chemistry 56: 17881800.CrossRefGoogle Scholar
Bernays, E.A., and Barbehenn, R.. 1987. Nutritional ecology of grass foliage-chewing insects. pp. 147175in Slansky, F. Jr.,, and Rodriguez, J.G. (Eds.), Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. John Wiley & Sons, New York, NY.Google Scholar
Bergvinson, D.J. 1993. Role of Phenolic Acids in Maize Resistance to the European Corn Borer, Ostrinia nubilalis (Hübner). Ph.D. thesis, University of Ottawa, Ottawa, Ont.171 pp.Google Scholar
Bergvinson, D.J., Amason, J.T., Hamilton, R.I., Mihm, J.A., and Jewell, D.. 1994. Determining leaf toughness and its role in maize resistance to the European corn borer (Lepidoptera: Pyralidae). Journal of Economic Entomology 87 (6): 17431748.CrossRefGoogle Scholar
Bergvinson, D.J., Arnason, J.T., Hamilton, R.I., Tachibana, S., and Towers, G.H.N.. 1995. Putative role of photodimerized phenolic acids in maize resistance to the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae). Journal of Environmental Entomology. In press.Google Scholar
Buendgen, M.R., Coors, J.G., Grombacher, A.W., and Russell, W.A.. 1990. European corn borer resistance and cell wall composition of three maize populations. Crop Science 30: 505510.CrossRefGoogle Scholar
Campos, F., Atkinson, J., Arnason, J.T., Philogène, B.J.R., Morand, P., Werstiuk, N.H., and Timmins, G.. 1989. Toxicokinetics of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in the European corn borer, Ostrinia nubilalis (Hübner). Journal of Chemical Ecology 15: 19892001.CrossRefGoogle ScholarPubMed
Classen, D., Arnason, J.T., Serratos, J.A., Lambert, J.D.H., Nozzolillo, C., and Philogène, B.J.R.. 1990. Correlation of phenolic acid content of maize to resistance to Sitophilus zeamais, the maize weevil in CIMMYT's collections. Journal of Chemical Ecology 16: 301315.CrossRefGoogle Scholar
Dowd, P.F. 1990. Responses of Carpophilus hemipterus larvae and adults to selected secondary metabolites of maize. Entomologia Experimentalis et Applicata 54: 2936.CrossRefGoogle Scholar
Feeny, P. 1976. Plant apparency and chemical defense. Recent Advances in Phytochemistry 10: 140.Google Scholar
Goto, M., Gordon, A.H., and Chesson, A.. 1991. Changes in cell-wall composition and degradability of sorghum during growth and maturation. Journal of the Science of Food and Agriculture 54: 4760.CrossRefGoogle Scholar
Guthrie, W.D., Tseng, C.T., Russell, W.A., Coats, J.R., Robbins, J.C., and Tollefson, J.J.. 1986 a. 2,4-Dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one content at seven stages of plant development in a maize (Zea mays) synthetic cultivar. Journal of the Kansas Entomological Society 59: 356360.Google Scholar
Guthrie, W.D., Wilson, R.L., Coats, J.R., Robbins, J.C., Tseng, C.T., Jarvis, J.L., and Russell, W.A.. 1986 b. European corn borer (Lepidoptera: Pyralidae) leaf-feeding resistance and DIMBOA content in inbred lines of dent maize grown under field versus greenhouse conditions. Journal of Economic Entomology 79: 14921496.CrossRefGoogle Scholar
Gutiérrez, C., Castanera, P., and Torres, V.. 1988. Wound-induced changes in DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4 benzoxazin-3 (4H)-one) concentration in maize plants caused by Sesamia nonagrioides (Lepidoptera: Noctuidae). Annals of Applied Biology 113: 447454.CrossRefGoogle Scholar
Hartley, R.D., and Ford, C.W.. 1989. Phenolic constituents of plant cell walls and wall biodegradability. pp. 137145in Lewis, N.G., and Paice, M.G. (Eds.), Biogenesis and Biodegradation. ACS Symposium Series 399.Google Scholar
Hartley, R.D., and Jones, E.C.. 1976. Diferulic acid as a component of cell walls of Lolium multiflorum. Phytochemistry 15: 11571160.CrossRefGoogle Scholar
Hartley, R.D., Whatley, F.R., and Harris, P.J.. 1988. 4,4'-Dihydroxytruxillic acid as a component of cell walls of Lolium multiflorum. Phytochemistry 27: 349351.CrossRefGoogle Scholar
Houseman, J.G., Campos, F., Thie, N.M.R., Philogène, B.J.R., Atkinson, J., Morand, P., and Arnason, J.T.. 1992. Effect of the maize-derived compounds DIMBOA and MBOA on growth and digestive processes of European corn borer (Lepidoptera: Pyralidae). Journal of Economic Entomology 85: 669674.CrossRefGoogle Scholar
Kato, Y., and Nevins, D.J.. 1985. Isolation and identification of O-(5-O-feruloyl-α-L-arabinofuranosyl)-(13)-O-β-D-xylopyranoxyl-(14)-D-xylopyranose as a component of Zea shoot cell-walls. Carbohydrate Research 137: 139150.CrossRefGoogle Scholar
Lawton, J.H. 1983. Plant architecture and the diversity of phytophagous insects. Annual Reviews of Entomology 28: 2339.CrossRefGoogle Scholar
Lee, D.A. 1988. Factors affecting mortality of the European corn borer, Ostrinia nubilalis (Hübner), in Alberta. The Canadian Entomologist 120: 841853.CrossRefGoogle Scholar
Manuwoto, S., and Scriber, J.M.. 1985. Neonate larval survival of European corn borers, Ostrinia nubilalis, on high and low DIMBOA genotypes of maize: Effects of light intensity and degree of insect inbreeding. Agriculture, Ecosystems and Environment 14: 221236.CrossRefGoogle Scholar
Morse, S., Wratten, S.D., Edwards, P.J., and Niemeyer, H.M.. 1991. Changes in the hydroxamic acid content of maize leaves with time and after artificial damage; implications for insect attack. Annals of Applied Biology 119: 239249.CrossRefGoogle Scholar
Niemeyer, H.M., Pesel, E., Copaja, S.V., Bravo, H.R., Franke, S., and Francke, W.. 1989. Changes in hydroxamic acid levels in wheat plants induced by aphid feeding. Phytochemistry 28: 23072310.CrossRefGoogle Scholar
Peterson, S.S., Scriber, J.M., and Coors, J.G.. 1988. Silica, cellulose and their interactive effects on the feeding performance of the Southern armyworm, Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae). Journal of the Kansas Entomological Society 61: 169177.Google Scholar
Robinson, J.F., Klun, J.A., and Brindley, T.A.. 1978. European corn borer: A non preference mechanism of leaf feeding resistance and its relationship to 1,4-benzoxazin-3-one concentration in dent corn tissue. Journal of Economic Entomology 71: 461465.CrossRefGoogle Scholar
Rojanaridpiched, C., Gracen, V.E., Everett, H.L., Coors, J.G., Pugh, B.F., and Bouthyette, P.. 1984. Multiple factor resistance in maize to European corn borer. Maydica 14: 305315.Google Scholar
Russell, W.A., and Guthrie, W.D.. 1982. Registration for BS9(CB)C4 maize germplasm (Reg. No. 97). Crop Science 22: 694.CrossRefGoogle Scholar
SAS Institute Inc. 1988. SAS/STAT User's Guide. Version 6.03. SAS Institute Inc., Cary, NC. 1028 pp.Google Scholar
Scriber, J.M., and Slansky, F. Jr., 1981. The nutritional ecology of immature arthropods. Annual Review of Entomology 26: 183211.CrossRefGoogle Scholar
Woodhead, S. 1981. Environmental and biotic factors affecting the phenolic content of different cultivars of Sorghum bicolor. Journal of Chemical Ecology 7: 10351047.CrossRefGoogle Scholar