Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T05:29:47.993Z Has data issue: false hasContentIssue false

Effect of drainage ditches on Brachycera (Diptera) diversity in a southern Quebec peatland

Published online by Cambridge University Press:  02 April 2012

Amélie Grégoire Taillefer
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
Terry A. Wheeler*
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
*
1 Corresponding author (e-mail: [email protected]).

Abstract

Canadian peatlands are subject to disturbance and destruction, and drainage for agriculture is responsible for 85% of this degradation. Few studies have explicitly addressed the effects of habitat degradation on arthropod diversity in Nearctic peatlands. Because higher Diptera (Brachycera) in peatlands are diverse, are an important component of food webs, and exhibit a wide range of ecological requirements, we examined species richness, abundance, and community composition of Brachycera across transects at 1, 6, and 11 m from a collector drainage ditch in Johnville Bog and Forest Park, Quebec. In total, 1453 Brachycera were collected, representing 24 families and 166 species. Species diversity (based on Simpson’s diversity index) and rarefaction-estimated species richness were higher at 6 and 11 m than at 1 m from the ditch, probably because of the homogeneous moss cover and moister conditions at greater distance from the ditch. Species composition also differed between 1 m and other distances, based on cluster analysis, multiresponse permutation procedures analysis, and the presence of five predaceous species that were significant indicator species 1 m from the drainage ditch. Our results suggest that anthropogenic degradation of hydrological conditions may be responsible for the low species richness and high dominance of a few species currently seen at the ditch margin.

Résumé

Les tourbières canadiennes sont sujettes aux perturbations et à la destruction, et le drainage pour l'agriculture est responsable de 85 % de cette dégradation. Parce que les brachycères des tourbières sont diversifiés, constituent une importante proportion de des réseaux trophiques, et exige une multitude de différents habitats; la richesse en espèces, l'abondance et la composition en espèces ont été déterminées le long de transects perpendiculaires à un canal de drainage à 1, 6 et 11 m dans le Parc Écoforestier de Johnville, Québec. Un total de 1453 brachycères a été récolté représentant 24 familles et 166 espèces. La diversité (indices Simpson) et la richesse en espèces estimée (raréfaction) étaient plus élevées à 6 et 11 m qu’à 1 m; cela est probablement dû au couvert de mousse homogène et aux conditions plus humides à une plus grande distance du canal. La composition en espèces différait aussi entre 1 m et les autres distances, basé sur l'analyse par regroupements, MRPP, et les cinq espèces significativement associées (espèces indicatrices) à 1 m du canal de drainage. Ces résultats suggèrent que les perturbations anthropiques des conditions hydrologiques sont responsables de la faible richesse en espèces et de la dominance élevée de quelques espèces aux abords du canal de drainage.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldissera, R., Ganade, G., and Fontoura, S.B. 2004. Web spider community response along an edge between pasture and Araucaria forest. Biological Conservation, 118: 403409. doi:10.1016/j.biocon.2003.09.017.CrossRefGoogle Scholar
Barták, M., and Roháček, J. 1999. The species of the family Empididae (Diptera) of the six peat-bogs in the Šumava Mts (Czech Republic). Acta Universitatis Carolinae—Biologica, 43: 726.Google Scholar
Blades, D.C.A., and Marshall, S.A. 1994. Terrestrial arthropods of Canadian peatlands: synopsis of pan trap collections at four southern Ontario peatlands. In Terrestrial arthropods of peat-lands, with particular reference to Canada. Edited by Finnamore, A.T. and Marshall, S.A.. Memoirs of the Entomological Society of Canada, 169: 221284.Google Scholar
Brown, B.V. 2001. Flies gnats and mosquitoes. In Encyclopedia of biodiversity. Vol. 2. Edited by Levin, S.A.. Academic Press, San Diego, California. pp. 815826.CrossRefGoogle Scholar
Brown, J.H., Morgan Ernest, S.K., Parody, J.M., and Haskell, J.P. 2001. Regulation of diversity: maintenance of species richness in changing environments. Oecologia, 126: 321332. doi:10.1007/s004420000536.CrossRefGoogle ScholarPubMed
Colwell, R.K. 2005. EstimateS: statistical estimation of species richness and shared species from samples. Version 7.5 [online]. Available from http://viceroy.eeb.uconn.edu/estimates [accessed 27 October 2009].Google Scholar
Coulson, J.C., and Butterfield, J.E.L. 1985. The invertebrate communities of peat and upland grasslands in the north of England and some conservation implications. Biological Conservation, 34: 197225. doi:10.1016/0006-3207(85)-90093-X.CrossRefGoogle Scholar
Coulson, J.C., Butterfield, J.E.L., and Henderson, E. 1990. The effect of open drainage ditches on the plant and invertebrate communities of moorland and the decomposition of peat. Journal of Applied Ecology, 27: 549561. doi:10.2307/2404301.CrossRefGoogle Scholar
Cumming, J.M., and Cooper, B.E. 1993. Techniques for obtaining adult-associated immature stages of predacious tachydromiine flies (Diptera: Empidoidea), with implications for rearing and biocontrol. Entomological News, 104: 93101.Google Scholar
Cumming, J.M., and Sinclair, B.J. 2009. Empididae (dance flies, balloon flies, predaceous flies). In Manual of Central American Diptera. Volume 1. Edited by Brown, B.V., Borkent, A., Cumming, J.M., Wood, D.M., Woodley, N.E., and Zumbado, M.A.. NRC Research Press, Ottawa, Ontario. pp. 653670.Google Scholar
Dangerfield, J.M., Pik, A.J., Britton, D., Holmes, A., Gillings, M., Oliver, I., Briscoe, D., and Beattie, A.J. 2003. Patterns of invertebrate biodiversity across a natural edge. Austral Ecology, 28: 227236. doi:10.1046/j.1442-9993.2003.01240.x.CrossRefGoogle Scholar
Dufrêne, M., and Legendre, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67: 345366.Google Scholar
Gotelli, N.J., and Entsminger, G.L. 2001. EcoSim: null models software for ecology. Version 7.0. Acquired Intelligence Inc. & Kesey G.L. Bear.Google Scholar
Government of Canada. 1991. The federal policy on wetlands conservation. Environment Canada, Ottawa, Ontario.Google Scholar
Haskell, D.G. 2001. Effects of forest roads on macroinvertebrate soil fauna of the southern Appalachian Mountains. Conservation Biology, 14: 5763. doi:10.1046/j.1523-1739.2000.99232.x.CrossRefGoogle Scholar
Holden, J., Chapman, P.J., and Labadz, J.C. 2004. Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Progress in Physical Geography, 28: 95123. doi:10.1191/0309133304pp403ra.CrossRefGoogle Scholar
Horvath, R., Magura, T., Peter, G., and Bayar, K. 2000. Edge effect on weevil and spider communities at the Bukk National Park in Hungary. Acta Zoologica Academiae Scientiarum Hungarica, 46: 275290.Google Scholar
Keiper, J.B., Walton, W.E., and Foote, B.A. 2002. Biology and ecology of higher Diptera from freshwater wetlands. Annual Review of Entomology, 47: 207232. PMID:11729074 doi:10.1146/annurev.ento.47.091201.145159.CrossRefGoogle ScholarPubMed
Kim, K.C. 1993. Biodiversity, conservation and inventory: why insects matter. Biodiversity and Conservation, 2: 191214. doi:10.1007/BF0005-6668.CrossRefGoogle Scholar
Kolka, R.K. and Thompson, J.A. 2006. Wetland geomorphology, soils, and formative processes. In Ecology of freshwater and estuarine wetlands. Edited by Batzer, D.P. and Sharitz, R.R.. University of California Press, Berkeley and Los Angeles, California. pp. 742.Google Scholar
Laiho, R. 2006. Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biology and Biochemistry, 38: 20112024. doi:10.1016/j.soilbio.2006.02.017.CrossRefGoogle Scholar
Laiho, R., Silvan, N., Càrcamo, H., and Vasander, H. 2001. Effects of water level and nutrients on spatial distribution of soil mesofauna in peat-lands drained for forestry in Finland. Applied Soil Ecology, 16: 19. doi:10.1016/S0929-1393(00)-00103-7.CrossRefGoogle Scholar
Laiho, R., Vasander, H., Penttilaä, T., and Laine, J. 2003. Dynamics of plant-mediated organic matter and nutrient cycling following water-level drawdown in boreal peatlands. Global Biogeo-chemical Cycles, 17: 1053. doi:10.1029/2002GB-002015Google Scholar
Laine, J., Vasander, H., and Laiho, R. 1995. Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. Journal of Applied Ecology, 32: 785802. doi:10.2307/2404818.Google Scholar
Latter, P.M., and Howson, G. 1978. Studies on the microfauna of blanket bog with particular reference to Enchytraeidae II. Growth and survival of Cognettia sphagnetorum on various substrates. Journal of Animal Ecology, 47: 425448. doi:10.2307/3792.CrossRefGoogle Scholar
Legendre, P., and Legendre, L. 1998. Numerical ecology. 2nd English ed. Elsevier, Amsterdam, the Netherlands.Google Scholar
Leighton, F.A. 1991. Disease considerations in habitat conservation and management. In: Proceedings of the Second Endangered Species and Prairie Conservation Workshop. Edited by Holroyd, G.L., Burnsand, G., and Smith, H.C.. Natural History Occasional Paper No. 15, Natural History Section, Provincial Museum of Alberta, Edmonton, Alberta. p. 33.Google Scholar
Lewis, D.J. 1987. Biting flies (Diptera) of peatlands and marshes in Canada. In Aquatic insects of peatlands and marshes in Canada. Edited by Rosenberg, D.M. and Danks, H.V.. Memoirs of the Entomological Society of Canada, 140: 133140.Google Scholar
Magurran, A.E. 2004. Measuring biological diversity. Blackwell Publishing, Malden, Massachusetts.Google Scholar
Marshall, S.A. 1994. Peatland Sphaeroceridae (Diptera) of Canada. In Terrestrial arthropods of peatlands, with particular reference to Canada. Edited by Finnamore, A.T. and Marshall, S.A.. Memoirs of the Entomological Society of Canada, 169: 173179.Google Scholar
Mathe, I. 2006. Forest edge and carabid diversity in a Carpathian beech forest. Community Ecology, 7: 9197. doi:10.1556/ComEc.7.2006.1.9.CrossRefGoogle Scholar
McCune, B., and Mefford, M.J. 2005. PC-ORD: multivariate analysis of ecological data. Version 4.36. MjM Software, Gleneden Beach, Oregon.Google Scholar
Moore, P.D. 2002. The future of cool temperate bogs. Environmental Conservation, 29: 321.CrossRefGoogle Scholar
Murkin, H.R., and Batt, B.D.J. 1987. The interactions of vertebrates and invertebrates in peatlands and marshes. In Aquatic insects of peatlands and marshes in Canada. Edited by Rosenberg, D.M. and Danks, H.V.. Memoirs of the Entomological Society of Canada, 140: 1530.Google Scholar
Payette, S. 2001. Les principaux types de tourbières. In Écologie des tourbières du Québec–Labrador : une perspective nord-américaine. Edited by Payette, S. and Rochefort, L.. Presses de l'Université Laval, Saint-Nicolas, Quebec. pp. 3989.CrossRefGoogle Scholar
Rampazzi, F. 2002. I Ditteri Dolicopodidi (Diptera: Dolichopodidae) delle torbiere a sfagni del Cantone Ticino e del Moesano (Val Calanca e Val Mesolcina, GR), Svizzera. Mitteilungen Schweizerische Entomologische Gesellschaft, 75 : 87111.Google Scholar
Reinikainen, A., Vasander, H., and Lindholm, T. 1984. Plant biomass and primary production of southern boreal mire-ecosystems in Finland. In Proceeding of the 7th International Peat Congress, Dublin, Ireland. The Irish National Peat Committee/IPS, Dublin, Helsinki. pp. 120.Google Scholar
Rochefort, L. 2000. Sphagnum: a keystone genus in habitat restoration. The Bryologist, 103: 503508. doi:10.1639/0007-2745(2000)103[0503:SAKGIH]2.0.CO;2.CrossRefGoogle Scholar
Rochefort, L., Quinty, F., Campeau, S., Johnson, K., and Malterer, T. 2003. North American approach to the restoration of Sphagnum dominated peatlands. Wetlands Ecology and Management, 11: 320. doi:10.1023/A:1022011027946.CrossRefGoogle Scholar
Roháček, J., and Máca, J. 1982. Acalypterate Diptera of peat-bogs in north Moravia (Czechoslovakia). Časopis Slezského Muzea, Opava (A), 31: 193213.Google Scholar
Roháček, J., Barták, M., and Kubík, Š. 1998. Diptera Acalyptrata of the Hraniční (Luzenská) slat' peat-bog in Šumava Mts. (Czech Republic). Časopis Slezského Muzea, Opava (A), 47: 112.Google Scholar
Schikora, H.-B. 1994. Changes in the terrestrial spider fauna (Arachnida: Araneae) of a north German raised bog disturbed by human influence. 1964–1965 and 1986–1987: a comparison. In Terrestrial arthropods of peatlands, with particular reference to Canada. Edited by Finnamore, A.T. and Marshall, S.A.. Memoirs of the Entomological Society of Canada, 169: 6171.Google Scholar
Silins, U., and Rothwell, R.L. 1999. Spatial patterns of aerobic limit depth and oxygen diffusion rate in at two peatlands drained for forestry in Alberta. Canadian Journal of Forest Research, 29: 5361. doi:10.1139/cjfr-29-1-53.CrossRefGoogle Scholar
Silvan, N., Laiho, R., and Vasander, H. 2000. Changes in mesofauna abundance in peat soils drained for forestry. Forest Ecology and Management, 133: 127133. doi:10.1016/S0378-1127(99)-00303-5.CrossRefGoogle Scholar
Spitzer, K., and Danks, H.V. 2006. Insect biodiversity of boreal peat bogs. Annual Review of Entomology, 51: 137161. PMID:16332207 doi:10.1146/annurev.ento.51.110104.151036.CrossRefGoogle ScholarPubMed
Ulrich, H. 2005. Predation by adult Dolichopodidae (Diptera): a review of literature with an annotated prey–predator list. Studia dipterologica, 11: 369403.Google Scholar
van Duinen, G.-J.A., Brock, A.M.T., Kuper, J.T., Leuven, R.S.E.W., Peeters, T.M.J., Roelofs, J.G.M., et al. 2003. Do restoration measures rehabilitate fauna diversity in raised bogs? A comparative study on aquatic macroinvertebrates. Wetlands Ecology and Management, 11: 447459. doi:10.1023/B:WETL.0000007196.75248.a5.Google Scholar
Vasander, J.H., and Laiho, R. 1995. Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. Journal of Applied Ecology, 32: 785802. doi:10.2307/2404818.Google Scholar
Wrubleski, D.A. 1987. Chironomidae (Diptera) of peatlands and marshes in Canada. In Aquatic insects of peatlands and marshes in Canada. Edited by Rosenberg, D.M. and Danks, H.V.. Memoirs of the Entomological Society of Canada, 140: 141162.Google Scholar