Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T21:21:30.745Z Has data issue: false hasContentIssue false

Effect of age and hunger on host-feeding behaviour by female Trichogramma euproctidis (Hymenoptera: Trichogrammatidae)

Published online by Cambridge University Press:  03 January 2013

Émilie Lessard*
Affiliation:
Department of Natural Resource Sciences (Entomology), Macdonald Campus of McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
Guy Boivin
Affiliation:
Horticultural Research and Development Centre, Agriculture and Agri-Food Canada, 430 Boulevard Gouin, St-Jean-sur-Richelieu, Québec J3B 3E6, Canada
*
1Corresponding author (e-mail: [email protected]).

Abstract

Adult parasitoid females can obtain proteins and lipid by consuming the haemolymph of their host. In Trichogramma Westwood (Hymenoptera: Trichogrammatidae) species, host feeding on the host egg occurs after oviposition and leads to smaller offspring. We tested the effect of age and hunger on host-feeding behaviour of female Trichogramma euproctidis Girault. Young and old females, either starved, water fed, or honey fed, were observed and the host-feeding frequency, duration, distribution, and number of hosts used for nutrition were measured. The sex ratio (proportion of males) allocated to parasitised hosts where host feeding occurred and time taken to parasitise 10 hosts (indicator of female mobility) were also noted. The majority of females host fed on the first host encountered. Age had no impact on frequency, duration, number of hosts used, and mobility of T. euproctidis. Starved females host fed longer and were less mobile. The sex ratio of the progeny emerging from the first host parasitised was more male biased when host feeding occurred. Host feeding had no effect on the sex ratio deposited elsewhere in the sequence of hosts encountered. Age of female had no effect on host feeding, possibly because host feeding incurs little cost for this species. To host feed on the first host parasitised, in which a male is allocated, is less costly in terms of fitness and represents a strategic choice for the female.

Résumé

Les femelles parasitoïdes adultes peuvent obtenir des protéines et des lipides en consommant l'hémolymphe de leur hôte. Chez Trichogramma Westwood (Hymenoptera: Trichogrammatidae), la nutrition sur l’œuf hôte se fait après la ponte et cause une réduction de la taille de la progéniture. Nous avons testé l'effet de l’âge et de la faim sur le comportement de nutrition sur l'hôte des femelles Trichogramma euproctidis Girault. Des femelles jeunes et vieilles ainsi que des femelles à jeun, nourries à l'eau ou nourries au miel ont été observées et la fréquence, la durée, la distribution de la nutrition sur l'hôte ainsi que le nombre d'hôtes utilisés pour se nourrir ont été mesurés. Le ratio des sexes (proportion de mâles) et le temps pris pour parasiter une séquence de dix hôtes différents (indicateur de la mobilité de la femelle) ont aussi été notés. La majorité des femelles se sont nourries sur le premier hôte rencontré. L’âge n'a pas eu d'impact sur la fréquence, la durée, le nombre d'hôtes utilisés pour la nutrition et la mobilité de T. euproctidis. Les femelles à jeun se sont nourries plus longtemps et avaient une moins bonne mobilité. La nutrition sur l'hôte était plus fréquente sur le premier œuf hôte rencontré et la proportion de mâles alloués sur cet hôte était plus grande. La nutrition sur l'hôte n'a pas eu d'effet sur le ratio des sexes déposé ailleurs dans la séquence d'hôtes rencontrés. Contrairement aux prédictions des modèles, l’âge de la femelle n'a pas eu d'effet sur la nutrition sur l'hôte possiblement parce que la nutrition engendre des coûts minimes chez cette espèce. Se nourrir sur le premier hôte parasité, dans lequel un mâle a été alloué, est moins coûteux en terme de valeur adaptative et représente un choix stratégique pour la femelle.

Type
Behaviour & Ecology
Copyright
Copyright © Entomological Society of Canada 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bai, B., Luck, R.F., Forster, L., Stephens, B., Janssen, J.A.M. 1992. The effect of host size on quality attributes of the egg parasitoid, Trichogramma pretiosum. Entomologia Experimentalis et Applicata, 64: 3748.CrossRefGoogle Scholar
Bai, B.Smith, S.M. 1993. Effect of host availability on reproduction and survival of the parasitoid wasp Trichogramma minutum. Ecological Entomology, 18: 279286.CrossRefGoogle Scholar
Bernstein, C.Jervis, M.A. 2008. Food-searching in parasitoids: the dilemma of choosing between ‘intermediate’ or future fitness gains. In Behavioural ecology of parasitoids. Edited by E. Wajnberg and J.J.M. van Alphen. Blackwell Publishing, Oxford, United Kingdom. pp. 129171.CrossRefGoogle Scholar
Boivin, G. 2010. Phenotypic plasticity and fitness in egg parasitoids. Neotropical Entomology, 39: 457463.CrossRefGoogle ScholarPubMed
Burger, J.M.S., Reijnen, T.M., van Lenteren, J.C., Vet, L.E.M. 2004. Host feeding in insect parasitoids: why destructively feed upon a host that excretes an alternative? Entomologia Experimentalis et Applicata, 112: 207215.CrossRefGoogle Scholar
Carrière, Y.Boivin, G. 1997. Evolution of thermal sensitivity of parasitization capacity in egg parasitoids. Evolution, 51: 20282032.CrossRefGoogle ScholarPubMed
Charnov, E.L. 1982. The theory of sex allocation. Princeton University Press, Princeton, New Jersey, United States of America.Google ScholarPubMed
Collier, T.R. 1995. Host feeding, egg maturation, resorption, and longevity in the parasitoid Aphytis melinus (Hymenoptera: Aphelinidae). Annals of the Entomological Society of America, 88: 206214.CrossRefGoogle Scholar
Damiens, D.Boivin, G. 2005. Male reproductive strategy in Trichogramma evanescens: sperm production and allocation to females. Physiological Entomology, 30: 241247.CrossRefGoogle Scholar
Dutton, A.Bigler, F. 1995. Flight activity assessment of the egg parasitoid Trichogramma brassicae (Hym.: Trichogrammatidae) in laboratory and field conditions. Entomophaga, 40: 223233.CrossRefGoogle Scholar
Ferracini, C., Boivin, G., Alma, A. 2006. Costs and benefits of host feeding in the parasitoid wasp Trichogramma turkestanica. Entomologia Experimentalis et Applicata, 121: 229234.CrossRefGoogle Scholar
Giron, D., Pincebourde, S., Casas, J. 2004. Lifetime gains of host-feeding in a synovigenic parasitic wasp. Physiological Entomology, 29: 436442.CrossRefGoogle Scholar
Giron, D., Riverom, A., Mandon, N., Darrouzet, E., Casas, J. 2002. The physiology of host feeding in parasitic wasps: implications for survival. Functional Ecology, 16: 750757.CrossRefGoogle Scholar
Godfray, H.C.J. 1994. Parasitoids, behavioral and evolutionary ecology. Princeton University Press, Princeton, New Jersey, United States of America.CrossRefGoogle Scholar
Godin, C.Boivin, G. 2000. Effects of host age on parasitism and progeny allocation in Trichogrammatidae. Entomologia Experimentalis et Applicata, 97: 149160.CrossRefGoogle Scholar
Goubault, M., Outreman, Y., Poinsot, D., Cortesero, A.M. 2005. Patch exploitation strategies of parasitic wasps under intraspecific competition. Behavioral Ecology, 16: 693701.CrossRefGoogle Scholar
Hamilton, W.D. 1967. Extraordinary sex ratio. Science, 156: 477488.CrossRefGoogle ScholarPubMed
Heimpel, G.E.Collier, T.R. 1996. The evolution of host-feeding behaviour in insect parasitoids. Biological Reviews, 71: 373400.CrossRefGoogle Scholar
Heimpel, G.E.Rosenheim, J.A. 1995. Dynamic host feeding by the parasitoid Aphytis melinus: the balance between current and future reproduction. Journal of Animal Ecology, 64: 153167.CrossRefGoogle Scholar
Heimpel, G.E., Rosenheim, J.A., Adams, J.M. 1994. Behavioral ecology of host feeding in Aphytis parasitoids. Norwegian Journal of Agricultural Sciences, Supplement, 16: 101115.Google Scholar
Heimpel, G.E., Rosenheim, J.A., Kattari, D. 1997. Adult feeding and lifetime reproductive success in the parasitoid Aphytis melinus. Entomologia Experimentalis et Applicata, 83: 305315.CrossRefGoogle Scholar
Heimpel, G.E., Rosenheim, J.A., Mangel, M. 1996. Egg limitation, host quality, and dynamic behavior by a parasitoid in the field. Ecology, 77: 24102420.CrossRefGoogle Scholar
Jacob, H.S.Evans, E.W. 2001. Influence of food deprivation on foraging decisions of the parasitoid Bathyplectes curculionis (Hymenoptera: Ichneumonidae). Annals of the Entomological Society of America, 94: 605611.CrossRefGoogle Scholar
Jervis, M.A., Ellers, J., Harvey, J.A. 2008. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annual Review of Entomology, 53: 361385.CrossRefGoogle ScholarPubMed
Jervis, M.A., Hawkins, B.A., Kidd, N.A.C. 1996. The usefulness of destructive host feeding parasitoids in classical biological control: theory and observation conflict. Ecological Entomology, 21: 4146.CrossRefGoogle Scholar
Jervis, M.A., Heimpel, G.E., Ferns, P.N., Harvey, J.A., Kidd, N.A.C. 2001. Life-history strategies in parasitoid wasps: a comparative analysis of ‘ovigeny’. Journal of Animal Ecology, 70: 442458.CrossRefGoogle Scholar
Jervis, M.A.Kidd, N.A.C. 1986. Host-feeding strategies in Hymenopteran parasitoids. Biological Reviews, 61: 395434.CrossRefGoogle Scholar
Jervis, M.A., Kidd, N.A.C., Walton, M. 1992. A review of methods for determining dietary range in adult parasitoids. Entomophaga, 37: 565574.CrossRefGoogle Scholar
King, B.H. 1987. Offspring sex ratios in parasitoid wasps. Quarterly Review of Biology, 62: 367396.CrossRefGoogle Scholar
Klomp, H.Teerink, B.J. 1967. The significance of oviposition rates in the parasite, Trichogramma embryophagum Htg. Archives Néerlandaises de Zoologie, 17: 350375.CrossRefGoogle Scholar
Lebreton, S., Darrouzet, E., Chevrier, C. 2009. Could hosts considered as low quality for egg-laying be considered as high quality for host-feeding? Journal of Insect Physiology, 55: 694699.CrossRefGoogle ScholarPubMed
Lewis, W.J., Stapel, J.O., Cortesero, A.M., Takasu, K. 1998. Understanding how parasitoids balance food and host needs: importance to biological control. Biological Control, 11: 175183.CrossRefGoogle Scholar
Lightle, D., Ambrosino, M., Lee, J.C. 2010. Sugar in moderation: sugar diets affect short-term parasitoid behaviour. Physiological Entomology, 35: 179185.CrossRefGoogle Scholar
Luck, R.F., Janssen, J.A.M., Pinto, J.D., Oatman, E.R. 2001. Precise sex allocation, local mate competition, and sex ratio shifts in the parasitoid wasp Trichogramma pretiosum. Behavioral Ecology and Sociobiology, 49: 311321.CrossRefGoogle Scholar
McGregor, R. 1997. Host-feeding and oviposition by parasitoids on hosts of different fitness value: influence of egg load and encounter rate. Journal of Insect Behavior, 10: 451462.CrossRefGoogle Scholar
Nurindah, Cribb, B., Gordh, G. 1999. Experience acquisition by Trichogramma australicum Girault (Hymenoptera: Trichogrammatidae). Australian Journal of Entomology, 38: 115119.Google Scholar
Pompanon, F., Fouillet, P., Bouletreau, M. 1999. Physiological and genetic factors as sources of variation in locomotion and activity rhythm in a parasitoid wasp (Trichogramma brassicae). Physiological Entomology, 24: 346357.CrossRefGoogle Scholar
Raubenheimer, D.Gäde, G. 1996. Separating food and water deprivation in locusts: effects on the patterns of consumption, locomotion and growth. Physiological Entomology, 21: 7684.CrossRefGoogle Scholar
Reynierse, J.H., Manning, A.Cafferty, D. 1972. The effects of hunger and thirst on body weight and activity in the cockroach (Nauphoeta cinerea). Animal Behaviour, 20: 751757.CrossRefGoogle ScholarPubMed
Rivero, A.West, S.A. 2005. The costs and benefits of host feeding in parasitoids. Animal Behaviour, 69: 12931301.CrossRefGoogle Scholar
Rosenheim, J.A.Heimpel, J.E. 1994. Sources of intraspecific variation in oviposition and host-feeding behavior. In Recent advances in the study of Aphytis. Edited by D. Rosen. Intercept, Andover, Hants, United Kingdom. pp. 4178.Google Scholar
Santolamazza-Carbone, S., Nieto, M.P., Rivera, A.C. 2007. Maternal size and age affect offspring sex ratio in the solitary egg parasitoid Anaphes nitens. Entomologia Experimentalis et Applicata, 125: 2332.CrossRefGoogle Scholar
Suverkropp, B.P., Bigler, F., van Lenteren, J.C. 2010. Movement and host finding of Trichogramma brassicae on maize plants. Bulletin of Insectology, 63: 115127.Google Scholar
Tezze, A.A.Botto, E.N. 2004. Effect of cold storage on the quality of Trichogramma nerudai (Hymenoptera: Trichogrammatidae). Biological Control, 30: 1116.CrossRefGoogle Scholar
Thompson, S.N. 1999. Nutrition and culture of entomophagous insects. Annual Review of Entomology, 44: 561592.CrossRefGoogle ScholarPubMed
Ueno, T.Ueno, K. 2007. The effects of host-feeding on synovigenic egg development in an endoparasitic wasp, Itoplectis naranyae [online]. Journal of Insect Science, 7: 46. doi: 10.1673/031.007.4601. Available from http://www.insectscience.org/7.46/i1536-2442-2007-46.pdf [accessed 8 October 2012].CrossRefGoogle Scholar
van Lenteren, J.C., van Vianen, A., Gast, H.F., Kortenhoff, A. 1987. The parasite-host relationship between Encarsia formosa Gahan (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum Westwood (Homoptera: Aleyrodidae). XVI. Food effects on oogenesis, life-span and fecundity of Encarsia formosa and other hymenopterous parasites. Journal of Applied Entomology, 103: 6984.CrossRefGoogle Scholar
Wajnberg, E., Bernhard, P., Hamelin, F., Boivin, G. 2006. Optimal patch time allocation for time-limited foragers. Behavioral Ecology and Sociobiology, 60: 110.CrossRefGoogle Scholar
Weisser, W.W. 1994. Age-dependent foraging behaviour and host-instar preference of the aphid parasitoid Lysiphlebus cardui. Entomologia Experimentalis et Applicata, 70: 110.CrossRefGoogle Scholar