Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T11:45:49.795Z Has data issue: false hasContentIssue false

Ecological applications of pheromone trapping of Malacosoma disstria and Choristoneura conflictana

Published online by Cambridge University Press:  02 April 2012

Brad C. Jones*
Affiliation:
Department of Biological Sciences, CW 405, Biological Sciences Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
Maya L. Evenden
Affiliation:
Department of Biological Sciences, CW 405, Biological Sciences Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
*
1Corresponding author (e-mail: [email protected]).

Abstract

The forest tent caterpillar, Malacosoma disstria Hübner (Lepidoptera: Lasiocampidae), and large aspen tortrix, Choristoneura conflictana (Walker) (Lepidoptera: Tortricidae), are important pests of trembling aspen, Populus tremuloides Michx. (Salicaceae), in western Canada. Populations of both species can be monitored with sex pheromone-baited traps as part of an integrated pest management program. Moths captured in pheromone traps can also be used for ecological studies. Captured males of each species were examined to test the effect of population density, geographic region, and collection date on moth quality. Moth quality was assessed on the basis of wing area and level of infection with microsporidian parasites. The level of microsporidian infection of M. disstria was strongly dependent on geographic region but not on population density. Male M. disstria from high-density populations had smaller wings than males from endemic populations. Wing area of male M. disstria decreased throughout the flight period. Neither collection date nor microsporidian infection level affected wing area of male C. conflictana. Collection date also did not affect the level of microsporidian infection of C. conflictana. These data support pheromone trapping as a tool to detect microsporidian infections and examine their temporal and density-dependent effects on wing size in M. disstria and C. conflictana populations.

Résumé

La livrée des forêts, Malacosoma disstria Hübner (Lepidoptera: Lasiocampidae), et la tordeuse du tremble, Choristoneura conflictana (Walker) (Lepidoptera: Tortricidae), sont d’importants ravageurs du tremble, Populus tremuloides Michx. (Salicaceae), dans l’ouest du Canada. Il est possible de suivre les populations des deux espèces au moyen de pièges munis de phéromones sexuelles dans le cadre d’un programme de lutte intégrée (IPM). On peut aussi utiliser les papillons récoltés dans des pièges pour des études écologiques. Nous avons examiné des mâles de chacune des espèces capturés dans les pièges pour vérifier l’effet de la densité de population, de la région géographique et de la date de récolte sur la qualité des papillons. La qualité des papillons se mesure par la surface alaire et le degré d’infection par les microsporidies parasites. Le degré d’infection aux microsporidies chez M. disstria est fortement dépendant de la région géographique, mais non de la densité de population. Les mâles de M. disstria des populations de forte densité ont les ailes plus petites que ceux des populations endémiques. La surface alaire des mâles de M. disstria diminue au cours de la période de vol. Ni la date de récolte, ni le degré d’infection par les microsporidies n’affectent la taille de l’aile chez les mâles de C. conflictana. La date de récolte n’affecte pas non plus le degré d’infection par les microsporidies chez C. conflictana. Ces données valident l’utilisation des pièges à phéromones comme outils pour déceler les infections à microsporidies et elles mettent en lumière les effets temporels et les effets dépendants de la densité sur la taille des ailes dans les populations de M. disstria et de C. conflictana.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altizer, S.M., and Oberhauser, K.S. 1999. Effects of the protozoan parasite Ophryocystis elektroscirrha on the fitness of monarch butterflies (Danus plexippus). Journal of Invertebrate Pathology, 74: 7688.CrossRefGoogle Scholar
Bauer, L.S., and Nordin, G.L. 1989. Effect of Nosema fumiferanae (Microsporidia) on fecundity, fertility and progeny performance of Choristoneura fumiferana (Lepidoptera: Tortricidae). Environmental Entomology, 18: 261265.CrossRefGoogle Scholar
Bellinger, R.G., Ravlin, F.W., and McManus, M.L. 1990. Predicting egg mass density and fecundity in field populations of the gypsy moth (Lepidoptera: Lymantriidae) using wing length of male moths. Environmental Entomology, 19: 10241028.CrossRefGoogle Scholar
Bradley, C.A., and Altizer, S. 2005. Parasites hinder monarch butterfly flight: implications of disease spread in migratory hosts. Ecology Letters, 8: 290300.CrossRefGoogle Scholar
Bryant, J.P., Clausen, T.P., Reichardt, P.B., McCarthy, M.C., and Werner, R.A. 1987. Effect of nitrogen fertilization upon the secondary chemistry and nutritional value of quaking aspen (Populus tremuloides Michx.) leaves for the large aspen tortrix (Choristoneura conflictana (Walker)). Oecologia, 73: 513517.CrossRefGoogle ScholarPubMed
Burke, J., and Percy, J. 1982. Survey of pathogens in the large aspen tortrix, Choristoneura conflictana (Lepidoptera: Tortricidae), in Ontario and British Columbia with particular reference to granulosis virus. The Canadian Entomologist, 114: 457459.CrossRefGoogle Scholar
Candau, J.-N., Abt, V., and Keatley, L. 2002. Bioclimatic analysis of declining aspen stands in northeastern Ontario. Forest Research Report No. 154, Ontario Forest Research Institute, Sault Ste. Marie, Ontario.Google Scholar
Carter, M.R., Ravlin, F.W., and McManus, M.L. 1991. Changes in gypsy moth (Lepidoptera: Lymantriidae) fecundity and male wing length resulting from defoliation. Environmental Entomology, 20: 10421047.CrossRefGoogle Scholar
Cerezke, H.F. 1992. Large aspen tortrix. Forestry Leaflet 21, Northern Forestry Centre, Canadian Forestry Service, Natural Resources Canada, Edmonton, Alberta.Google Scholar
Chisholm, M.D., Palaniswamy, P., Underhill, E.W. 1982. Orientation disruption of male forest tent caterpillar (Malacosoma disstria Hbn.) (Lepidoptera: Lasiocampidae) by air permeation with sex pheromone components. Environmental Entomology, 11: 12481250.CrossRefGoogle Scholar
Churchill, G.B., John, H.H., Duncan, D.P., and Hodson, A.C. 1964. Long-term effects of defoliation of aspen by the forest tent caterpillar. Ecology, 45: 630633.CrossRefGoogle Scholar
Clausen, T.P., Reichardt, P.B., Bryant, J.P., Werner, R.A., Post, K., and Frisby, K. 1989. Chemical model for short-term induction in quaking aspen (Populus tremuloides) foliage against herbivores. Journal of Chemical Ecology, 15: 23352346.CrossRefGoogle ScholarPubMed
Du Merle, P., and Cornic, J.-F. 1991. Monitoring the reproductive capacity of Choristoneura murinana (Lepidoptera: Tortricidae) populations by measuring the size of male moths caught in sex pheromone traps. Acta Oecologica, 12: 369383.Google Scholar
Elkinton, J.S., and Liebhold, A.M. 1990. Population dynamics of gypsy moth in North America. Annual Review of Entomology, 35: 571596.CrossRefGoogle Scholar
Eveleigh, E.S., Lucarotti, C.J., McCarthy, P.C., Morin, B., Royama, T., and Thomas, A.W. 2007. Occurrence and effects of Nosema fumiferanae infections on adult spruce budworm caught above and within the forest canopy. Agricultural and Forest Entomology, 9: 247258.CrossRefGoogle Scholar
Evenden, M.L. 2005. Potential for combining sex pheromones for the forest tent caterpillar (Lepidoptera: Lasiocampidae) and the large aspen tortrix (Lepidoptera: Tortricidae) within monitoring traps targeting both species. The Canadian Entomologist, 137: 615619.CrossRefGoogle Scholar
Evenden, M.L., and Gries, R. 2006. Sex pheromone of the large aspen tortrix, Choristoneura conflictana (Lepidoptera: Tortricidae). Chemoecology, 16: 115122.CrossRefGoogle Scholar
Evenden, M.L., Lopez, M.S., and Keddie, B.A. 2006. Body size, age, and disease influence female reproductive performance in Choristoneura conflictana (Lepidoptera: Tortricidae). Annals of the Entomological Society of America, 99: 837844.CrossRefGoogle Scholar
Fitzgerald, T.D. 1995. The tent caterpillars. Cornell University Press, Ithaca, New York.Google Scholar
Gaugler, R.R., and Brooks, W.M. 1975. Sublethal effects of infection by Nosema heliothidis in the corn earworm, Heliothis zea. Journal of Invertebrate Pathology, 26: 5763.CrossRefGoogle Scholar
Hemming, J.D.C., and Lindroth, R.L. 1999. Effects of light and nutrient availability on aspen: growth, phytochemistry, and insect performance. Journal of Chemical Ecology, 25: 16871714.CrossRefGoogle Scholar
Hildahl, V., and Reeks, W.A. 1960. Outbreaks of the forest tent caterpillar, Malacosoma disstria Hbn., and their effects on stands of trembling aspen in Manitoba and Saskatchewan. The Canadian Entomologist, 92: 199209.CrossRefGoogle Scholar
Hill, J.K., Thomas, C.D., and Blakely, D.S. 1999. Evolution of flight morphology in a butterfly that has recently expanded its geographic range. Oecologia, 121: 165170.CrossRefGoogle Scholar
Hill, R.E., and Gary, W.J. 1979. Effects of microsporidium, Nosema pyrausta, on field populations of European corn borers in Nebraska. Environmental Entomology, 8: 9195.CrossRefGoogle Scholar
Hoffman, A.A., Collins, E., and Woods, R. 2002. Wing shape and wing size changes as indicators of environmental stress in Helicoverpa punctigera (Lepidoptera: Noctuidae) moths: comparing shifts in means, variances, and asymmetries. Environmental Entomology, 31: 961971.CrossRefGoogle Scholar
Honek, A. 1993. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos, 66: 483492.CrossRefGoogle Scholar
Hunter, A.F., and Lechowicz, M.J. 1992. Foliage quality changes during canopy development of some northern hardwood trees. Oecologia, 89: 316323.CrossRefGoogle ScholarPubMed
Ives, W.G.H., and Wong, H.R. 1988. Tree and shrub insects of the prairie provinces. Information Report NOR-X-292, Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, Edmonton, Alberta.Google Scholar
Jones, B.C. 2007. Development of a combined sex pheromone-based monitoring system to detect population density changes and monitor moth condition of Malacosoma disstria and Choristoneura conflictana. M.Sc. thesis, University of Alberta, Edmonton, Alberta.Google Scholar
Jones, B.C., and Despland, E. 2006. Effects of synchronization with host plant phenology occur early in the larval development of a spring folivore. Canadian Journal of Zoology, 84: 628633.CrossRefGoogle Scholar
Klemola, T., Ruohomäki, K., Andersson, T., and Neuvonen, S. 2004. Reduction in size and fecundity of the autumnal moth, Epirrita autumnata, in the increase phase of a population cycle. Oecologia, 141: 4756.CrossRefGoogle ScholarPubMed
Kopper, B.J., and Lindroth, R.L. 2003. Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Oecologia, 134: 95103.CrossRefGoogle ScholarPubMed
Maddox, J.V., McManus, M.L., and Solter, L.F. 1998. Microsporidia affecting forest Lepidoptera. United States Department of Agriculture Forest Service General Technical Report NE-247. pp. 187197.Google Scholar
Nordin, G.L. 1976. Influence of natural Nosema sp. infections on field populations of Malacosoma americanum (Lepidoptera: Lasiocampidae). Journal of the Kansas City Entomological Society, 49: 3240.Google Scholar
Osier, T.L., Hwang, S.-Y., and Lindroth, R.L. 2000. Within- and between-year variation in early season phytochemistry of quaking aspen (Populus tremuloides Michx.) clones. Biochemical Systematics and Ecology, 28: 197208.CrossRefGoogle Scholar
Palaniswamy, P., Chisholm, M.D., Underhill, E.W., Reed, D.W., and Peesker, S.J. 1983. Disruption of forest tent caterpillar (Lepidoptera: Lasiocampidae) orientation to baited traps in aspen groves by air permeation with (5Z, 7E )-5,7-dodecadienal. Journal of Economic Entomology, 76: 11591163.CrossRefGoogle Scholar
Sanders, C.J., and Wilson, G.G. 1990. Flight duration of male spruce budworm (Choristoneura fumiferana [Clem.]) and attractiveness of female spruce budworm are unaffected by microsporidian infection or moth size. The Canadian Entomologist, 122: 419422.CrossRefGoogle Scholar
Schmidt, B.C., and Roland, J. 2003. Developing techniques for monitoring forest tent caterpillar populations using synthetic pheromones. The Canadian Entomologist, 135: 439448.CrossRefGoogle Scholar
Schmidt, B.C., Roland, J., and Wakarchuk, D. 2003. Evaluation of synthetic phermones for monitoring forest tent caterpillar (Lepidoptera: Lasiocampidae) populations. Environmental Entomology, 32: 214219.CrossRefGoogle Scholar
SPSS Inc. 2005. SPSS® version 11.0.3 [computer program[. SPSS Inc., Chicago, Illinois.Google Scholar
Thomson, H.M. 1958 a. Some aspects of the epidemiology of a microsporidian parasite of the spruce budworm, Choristoneura fumiferana (Clem.). Canadian Journal of Zoology, 36: 309316.CrossRefGoogle Scholar
Thomson, H.M. 1958 b. The effect of a microsporidian parasite on the development, reproduction, and mortality of the spruce budworm, Choristoneura fumiferana (Clem.). Canadian Journal of Zoology, 36: 499511.CrossRefGoogle Scholar
Thomson, H.M. 1959. A microsporidian parasite of the forest tent caterpillar, Malacosoma disstria Hbn. Canadian Journal of Zoology, 37: 217221.CrossRefGoogle Scholar
van Frankenhuyzen, K., Ebling, P., McCron, B., Ladd, T., Gauthier, D., and Vossbrinck, C. 2004. Occurrence of Cytosporogenes sp. (Protozoa, Microsporidia) in a multi-species insect production facility and its elimination from a colony of the eastern spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Journal of Invertebrate Pathology, 87: 1628.CrossRefGoogle Scholar
Wilson, G.G. 1977 a. Effects of the microsporidia Nosema disstriae and Pleistophora schubergi on the survival of the forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae). The Canadian Entomologist, 109: 10211022.CrossRefGoogle Scholar
Wilson, G.G. 1977 b. Observations on the incidence rates of Nosema fumiferanae (Microsporidia) in a spruce budworm, Choristoneura fumiferana, (Lepidoptera: Tortricidae). Proceedings of the Entomological Society of Ontario, 108: 144145.Google Scholar
Wilson, G.G. 1979. Effects of Nosema disstriae (Microsporidia) on the forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae). Proceedings of the Entomological Society of Ontario, 110: 9799.Google Scholar
Wilson, G.G., and Burke, J.M. 1971. Nosema thomsoni n. sp., microsporidian from Choristoneura conflictana (Lepidoptera: Tortricidae). Canadian Journal of Zoology, 49: 786788.CrossRefGoogle Scholar
Witter, J.A., and Waisanen, L.A. 1978. The effect of differential flushing times among trembling aspen clones on tortricid caterpillar populations. Environmental Entomology, 7: 139143.CrossRefGoogle Scholar