Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T02:59:11.809Z Has data issue: false hasContentIssue false

Dung-beetle (Coleoptera: Scarabaeidae: Scarabaeinae) assemblage in two livestock production systems in a southern Mexican High Plateau semiarid ecosystem

Published online by Cambridge University Press:  09 March 2021

Benjamín Hernández
Affiliation:
Centro de Estudios en Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, 45200, México Departamento de Ciencias Básicas, Instituto Tecnológico de Tlajomulco, Tecnológico Nacional de México, Carretera Tlajomulco-San Miguel Cuyutlán, Tlajomulco de Zúñiga, Jalisco, 45640, México
José L. Barragán-Ramírez
Affiliation:
Centro de Estudios en Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, 45200, México
José L. Navarrete-Heredia*
Affiliation:
Centro de Estudios en Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, 45200, México
Georgina Adriana Quiroz-Rocha
Affiliation:
Centro de Estudios en Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, 45200, México
Miguel Vásquez-Bolaños
Affiliation:
Centro de Estudios en Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, 45200, México
*
*Corresponding author. Email: [email protected]

Abstract

In this work, we used measures of diversity and biogeographic patterns to evaluate the response of dung-beetle assemblages (Coleoptera: Scarabaeidae: Scarabaeinae) at two cattle ranches with different management systems on the southern Mexican High Plateau. The number of individuals and biomass were used as the primary diversity attributes of the assemblage. The 1D and 2D true diversity indexes of these attributes were examined, and the attributes were classified according to Halffter’s biogeographical patterns. In total, 1375 Scarabaeinae adults were collected, representing 11 species and seven genera. Site management regime did not significantly affect species richness or assemblage structure when the number of individuals was considered. However, species diversity and biomass turnover were higher in the system with holistic management than in that with semitechnified management. The proportions of Halffter’s biogeographical patterns also differed between the two production systems. In conclusion, the location under holistic management, despite having cattle production, contained a significant proportion of the Scarabaeinae species that are typical of the Mexican High Plateau. In contrast, the semitechnified system negatively impacted beetle abundance, leading to half the individuals, the dominance of species with high biomass, and the absence of groups typical of the region.

Type
Research Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of the Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Andrew Smith

References

Aguilera Soto, J.I., Bañuelos Valenzuela, R., Echavarría Chairez, F.G., Gutiérrez Luna, R., Ledesma Rivera, R.I., and Serna Pérez, A. 2006. Influencia del sistema de pastoreo con pequeños rumiantes en un agostadero del semiárido Zacatecano. I Vegetación nativa. Técnica Pecuaria en México, 44: 203217.Google Scholar
Alvarado, F., Dáttilo, W., and Escobar, F. 2019. Linking dung beetle diversity and its ecological function in a gradient of livestock intensification management in the Neotropical region. Applied Soil Ecology, 143: 173180. https://doi.org/10.1016/j.apsoil.2019.06.016.CrossRefGoogle Scholar
Alvarado, F., Escobar, F., Williams, D.R., Arroyo-Rodríguez, V., and Escobar-Hernández, F. 2018. The role of livestock intensification and landscape structure in maintaining tropical biodiversity. Journal of Applied Ecology, 55: 185194. https://doi.org/10.1111/1365-2664.12957.CrossRefGoogle Scholar
Alvarado, F., Salomão, R.P., Hernandez-Rivera, Á., and de Araujo Lira, A.F. 2020. Different responses of dung beetle diversity and feeding guilds from natural and disturbed habitats across a subtropical elevational gradient. Acta Oecologica, 104: 103533. https://doi.org/10.1016/j.actao.2020.103533.CrossRefGoogle Scholar
Arellano, L. and Halffter, G. 2003. Gamma diversity: derived from and a determinant of alpha diversity and beta diversity. An analysis of three tropical landscapes. Acta Zoológica Mexicana (nueva serie), 90: 2776.Google Scholar
Arellano, L., León-Cortés, J., and Halffter, G. 2008. Response of dung beetle assemblages to landscape structure in remnant natural and modified habitats in southern Mexico. Insect Conservation and Diversity, 1: 253262. https://doi.org/10.1111/j.1752-4598.2008.00033.x.CrossRefGoogle Scholar
Arriaga, L., Aguilar, C., Espinosa, D., and Jiménez, R. 1997. Regionalización Ecológica y Biogeográfica de México. Taller de la Comisión Nacional para el Conocimiento y Uso de la Biodiversidad Press, México, México.Google Scholar
Arriaga, A., Halffter, G., and Moreno, C. 2012. Biogeographical affinities and species richness of copronecrophagous beetles (Scarabaeoidea) in the southeastern Mexican High Plateau. Revista Mexicana de Biodiversidad, 83: 519529. https://doi.org/10.22201/ib.20078706e.2012.2.933.CrossRefGoogle Scholar
Arriaga-Jiménez, A., Rös, M., and Halffter, G. 2018. High variability of dung beetle diversity patterns at four mountains of the Trans-Mexican Volcanic Belt. PeerJ, 6: e4468. https://doi.org/10.7717/peerj.4468.CrossRefGoogle ScholarPubMed
Bakker, E.S., Ritchie, M.E., Olff, H., Milchunas, D.G., and Knops, J.M.H. 2006. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecology Letters, 9: 780788. https://doi.org/10.1111/j.1461-0248.2006.00925.x.CrossRefGoogle ScholarPubMed
Barragán, F., Moreno, C.E., Escobar, F., Bueno-Villegas, J., and Halffter, G. 2014. The impact of grazing on dung beetle diversity depends on both biogeographical and ecological context. Journal of Biogeography, 41: 19912002. https://doi.org/10.1111/jbi.12351.CrossRefGoogle Scholar
Basto-Estrella, G.S., Rodríguez-Vivas, R.I., Delfín-González, H., and Reyes-Novelo, E. 2014. Dung beetle (Coleoptera: Scarabaeinae) diversity and seasonality in response to use of macrocyclic lactones at cattle ranches in the Mexican Neotropics. Insect Conservation and Diversity, 7: 7381. https://doi.org/10.1111/icad.12035.CrossRefGoogle Scholar
Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K., and Ellison, A.M. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84: 4567. https://doi.org/10.1890/13-0133.1.CrossRefGoogle Scholar
Chao, A. and Jost, L. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93: 25332547. https://doi.org/10.1890/11-1952.1.CrossRefGoogle ScholarPubMed
Charney, N. and Record, S. 2012. Vegetarian: Jost diversity measures for community data. R package. Version 1.2. Available from https://rdrr.io/cran/vegetarian/ [accessed 8 December 2020].Google Scholar
Cultid-Medina, C.A. and Escobar, F. 2016. Assessing the ecological response of dung beetles in an agricultural landscape using number of individuals and biomass in diversity measures. Environmental Entomology, 45: 310319. https://doi.org/10.1093/ee/nvv219.CrossRefGoogle Scholar
De Baan, L., Alkemade, R., and Koellner, T. 2013. Land use impacts on biodiversity in LCA: a global approach. The International Journal of Life Cycle Assessment, 18: 12161230. https://doi.org/10.1007/s11367-012-0412-0.CrossRefGoogle Scholar
Eccard, J.A., Walther, R.B., and Milton, S.J. 2000. How livestock grazing affects vegetation structures and small mammal distribution in the semi-arid Karoo. Journal of Arid Environments, 46: 103106. https://doi.org/10.1006/jare.2000.0659.CrossRefGoogle Scholar
Economic Commission for Latin America and the Caribbean. 2013. Panorama Social de América Latina 2013. Publicación de las Naciones Unidas Press, Santiago de Chile, Chile.Google Scholar
Favila, M.E. 2012. Historical, biogeographical and ecological factors explain the success of some native dung beetles after the introduction of cattle in Mexico. Pastos, 42: 161181.Google Scholar
Favila, M.E. and Halffter, G. 1997. The use of indicator groups for measuring biodiversity as related to community structure and function. Acta Zoológica Mexicana (nueva serie), 72: 125.Google Scholar
García, E. 2004. Modificaciones al Sistema de Clasificación Climática de Köppen. Instituto de Geografía-UNAM Press, México, México.Google Scholar
Gerber, P., Mooney, H.A., Dijkman, J., Tarawali, S., and de Haan, C., Editors. 2010. Livestock in a changing landscape: experiences and regional perspectives. Island Press, Washington, District of Columbia, United States of America.Google Scholar
Halffter, G. 1987. Biogeography of the montane entomofauna of Mexico and Central America. Annual Review of Entomology, 32: 95114. https://doi.org/10.1146/annurev.en.32.010187.000523.CrossRefGoogle Scholar
Halffter, G. and Arellano, L. 2002. Response of dung beetle diversity to human-induced changes in a tropical landscape. Biotropica, 34: 144154. https://doi.org/10.1111/j.1744-7429.2002.tb00250.x.CrossRefGoogle Scholar
Halffter, G. and Morrone, J. 2017. An analytical review of Halffter’s Mexican transition zone, and its relevance for evolutionary biogeography, ecology and biogeographical regionalization. Zootaxa, 4226: 146. https://doi.org/10.11646/zootaxa.4226.1.1.CrossRefGoogle ScholarPubMed
Halffter, G., Verdú, J.R., Márquez, J., and Moreno, C.E. 2008. Biogeographical analysis of Scarabaeinae and Geotrupinae along a transect in central Mexico Coleoptera. Scarabaeoidea. Fragmenta Entomologica, 40: 273322. https://doi.org/10.4081/fe.2008.99.CrossRefGoogle Scholar
Hernández, B. and Navarrete-Heredia, J.L. 2018. Annotated checklist and biogeographical affinities of Scarabaeinae beetles from Los Altos de Jalisco Region, Mexico. Southwestern Entomologist, 43: 131149. https://doi.org/10.3958/059.043.0130.CrossRefGoogle Scholar
Hsieh, T.C., Ma, K.H., and Chao, A. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7: 14511456. https://doi.org/10.1111/2041-210X.12613.CrossRefGoogle Scholar
Instituto Nacional de Estadística y Geografía. 2014. Diccionario de Datos de Uso del Suelo y Vegetación: Escala 1:250 000. Serie VI. Instituto Nacional de Estadística y Geografía, México, México.Google Scholar
Johnson, D.H. 2001. Habitat fragmentation effects on birds in grasslands and wetlands: a critique of our knowledge. Great Plains Research, 11: 211231.Google Scholar
Jost, L. 2006. Entropy and diversity. Oikos, 113: 363375. https://doi.org/10.1111/j.2006.0030-1299.14714.x.CrossRefGoogle Scholar
Lizardo, V. and Castellanos-Vargas, I. 2016. Dung beetle community response to vegetation type and season in an arid zone of the Mexican Plateau. Southwestern Entomologist, 41: 441452. https://doi.org/10.3958/059.041.0215.CrossRefGoogle Scholar
Magurran, A.E. 2004. Measuring biological diversity. Blackwell Publishing Press, Malden, Massachusetts, United States of America.Google Scholar
Marsh, C.J., Louzada, J., Beiroz, W., and Ewers, R.M. 2013. Optimising bait for pitfall trapping of Amazonian dung beetles (Coleoptera: Scarabaeinae). PLOS One 8: e73147. https://doi.org/10.1371/journal.pone.0073147.CrossRefGoogle Scholar
Martin, T.G. and McIntyre, S. 2007. Impacts of livestock grazing and tree clearing on birds of woodland and riparian habitats. Conservation Biology, 21: 504514. https://doi.org/10.1111/j.1523-1739.2006.00624.x.CrossRefGoogle ScholarPubMed
Martínez, I., Lumaret, J.P., Zayas, R.O., and Kadiri, N. 2017a. The effects of sublethal and lethal doses of ivermectin on the reproductive physiology and larval development of the dung beetle Euoniticellus intermedius (Coleoptera: Scarabaeidae). The Canadian Entomologist, 149: 461472. https://doi.org/10.4039/tce.2017.11.CrossRefGoogle Scholar
Martínez, I., Ramírez-Hernández, A., and Lumaret, J.P. 2017b. Medicinas Veterinarias, Plaguicidas, y los Escarabajos del Estiércol en la Zona Tropical de Palma Sola, Veracruz, México. Southwestern Entomologist, 42: 563574. https://doi.org/10.3958/059.042.0225.CrossRefGoogle Scholar
Moctezuma, V., Halffter, G., and Escobar, F. 2016. Response of copronecrophagous beetle communities to habitat disturbance in two mountains of the Mexican Transition Zone: influence of historical and ecological factors. Journal of Insect Conservation, 20: 945956. https://doi.org/10.1007/s10841-016-9923-5.CrossRefGoogle Scholar
Morrone, J. 2005. Hacia una síntesis biogeográfica de México. Revista Mexicana de biodiversidad, 76: 207252. https://doi.org/10.22201/ib.20078706e.2005.002.303.CrossRefGoogle Scholar
Navarrete, D. and Halffter, G. 2008. Dung beetle (Coleoptera: Scarabaeidae: Scarabaeinae) diversity in continuous forest, forest fragments and cattle pastures in a landscape of Chiapas, Mexico: the effects of anthropogenic changes. Biodiversity and Conservation, 17: 28692898. https://doi.org/10.1007/s10531-008-9402-8.CrossRefGoogle Scholar
Nichols, E., Spector, S., Louzada, J., Larsen, T., Amezquita, S., and Favila, M.E. 2008. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological Conservation, 141: 14611474. https://doi.org/10.1016/j.biocon.2008.04.011.CrossRefGoogle Scholar
Noss, R.F. 1990. Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology, 4: 355364.CrossRefGoogle Scholar
Piñero, F.S. and Avila, J.M. 2004. Dung-insect community composition in arid zones of south-eastern Spain. Journal of Arid Environments, 56: 303327. https://doi.org/10.1016/S0140-1963(03)00057-0.CrossRefGoogle Scholar
R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/ [accessed 18 March 2018].Google Scholar
Robinson, T.P., Thornton, P.K., Franceschini, G., Kruska, R.L., Chiozza, F., Notenbaert, A., et al. 2011. Global livestock production systems. Food and Agriculture Organisation of the United Nations (FAO) and International Livestock Research Institute (ILRI), Rome, Italy.Google Scholar
Rös, M., Escobar, F., and Halffter, G. 2012. How dung beetles respond to a human-modified variegated landscape in Mexican cloud forest: a study of biodiversity integrating ecological and biogeographical perspectives. Diversity and Distributions, 18: 377389. https://doi.org/10.1111/j.1472-4642.2011.00834.x.CrossRefGoogle Scholar
Saint-Germain, M., Buddle, C.M., Larrivée, M., Mercado, A., Motchula, T., Reichert, E., et al. 2007. Should biomass be considered more frequently as a currency in terrestrial arthropod community analyses? Journal of Applied Ecology, 44: 330339. https://doi.org/10.1111/j.1365-2664.2006.01269.x.CrossRefGoogle Scholar
Sánchez-de-Jesús, H.A., Arroyo-Rodríguez, V., Andresen, E., and Escobar, F. 2016. Forest loss and matrix composition are the major drivers shaping dung beetle assemblages in a fragmented rainforest. Landscape Ecology, 31: 843854. https://doi.org/10.1007/s10980-015-0293-2.CrossRefGoogle Scholar
Spector, S. 2006. Scarabaeinae dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae): an invertebrate focal taxon for biodiversity research and conservation. The Coleopterists Bulletin, 60: 7183. https://doi.org/10.1649/0010–065X(2006)60[71:SDBCSS]2.0.CO;2.CrossRefGoogle Scholar
Thornton, P.K. 2010. Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365: 28532867. https://doi.org/10.1098/rstb.2010.0134.CrossRefGoogle Scholar
Verdú, J.R., Moreno, C.E., Sánchez-Rojas, G., Numa, C., Galante, E., and Halffter, G. 2007. Grazing promotes dung beetle diversity in the xeric landscape of a Mexican Biosphere Reserve. Biological Conservation, 140: 308317. https://doi.org/10.1016/j.biocon.2007.08.015.CrossRefGoogle Scholar