Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T12:57:09.030Z Has data issue: false hasContentIssue false

Domestication of wheats (Gramineae) and their susceptibility to herbivory by Sitodiplosis mosellana (Diptera: Cecidomyiidae)

Published online by Cambridge University Press:  31 May 2012

I.L. Wise
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
R.J. Lamb*
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
M.A.H. Smith
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
*
1 Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

In field and laboratory tests the wheat midge, Sitodiplosis mosellana (Géhin), oviposited and developed on all 43 accessions of 17 species of diploid, tetraploid, and hexaploid wheats, Triticum L. spp. Ancestral diploid wild wheats had the lowest infestations among species in the genus, and two hexaploid species, Triticum sphaerococcum Percival and Triticum zhukovskyi Men. and Er., were more heavily infested than common wheat, Triticum aestivum L. In five lineages recognized in the genus, infestation increased in association with domestication, although not always in a continuous way. The level of infestation was not related to seed size or the number of seeds in spikes. Wheat species with free-threshing seeds and compact spikes were more infested by larvae than ancestral wheat species with less compact spikes and glumes that were either affixed to or pressed tightly against the seed. An association between glume tightness and spike compactness may explain the positive correlation between susceptibility and spike compactness. Domestication increased the susceptibility of crop wheats to wheat midge, possibly because the free-threshing trait affects the suitability of the glume–seed interface for oviposition and establishment of larvae on the seeds. The ancestral cultivated wheats, Triticum spelta L. and Triticum dicoccoides Körn., are promising sources of resistance to wheat midge because they have the same genomes as modern wheats and relatively low susceptibility. One free-threshing accession of Triticum dicoccum Schrank had relatively low susceptibility to wheat midge and may provide a source of resistance.

Résumé

Au cours de tests sur le terrain et en laboratoire, des Cécidomyies du blé, Sitodiplosis mosellana (Géhin), ont réussi à pondre et à se développer sur chacune des 43 accessions de 17 espèces de blés diploïdes, tétraploïdes, et hexaploïdes Triticum spp. L. Ce sont les espèces diploïdes ancestrales de blé sauvage qui ont les taux d’infestation les plus bas de toutes les espèces du genre, et deux espèces hexaploïdes, T. sphaerococcum Percival et T. zhukovskyi Men. et Er., ont des taux d’infestation plus élevés que le blé commun T. aestivum L. Chez cinq lignées reconnues au sein du genre, l’infestation augmente avec la domestication, mais pas nécessairement de façon continue. Le degré d’infestation n’est pas relié à la taille des graines, ni au nombre de graines dans les épis. Les espèces de blé à graines libres au battage et à épis compacts sont plus infestées par les larves que l’espèce ancestrale qui possède des épis moins compacts et des glumes qui sont rattachées aux graines ou compressées contre elles. Un rapport entre la solidité de l’attachement des glumes et la compacité des épis pourrait expliquer la corrélation positive entre la vulnérabilité et la compacité des épis. La domestication augmente la vulnérabilité des blés de culture à la Cécidomyie du blé, peut-être parce que la possession de graines libres au battage augmente la vulnérabilité de l’interface glumes-graines à la ponte et à la colonisation des graines par les larves. Les blés cultivés ancestraux T. spelta L. et T. dicoccoides Körn. sont des sources de résistance à la cécidomyie parce qu’ils possèdent les mêmes génomes que les blés modernes et sont relativement peu vulnérables. Une accession de T. dicoccum Schrank à graines libres au battage s’est montrée peu vulnérable aux infestations et est peut-être aussi une source de résistance.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, PS. 1986. Statistical distribution of damage on wheat spikes caused by the wheat midge, Sitodiplosis mosellana (Géhin), in Manitoba. The Canadian Entomologist 118: 1075–7CrossRefGoogle Scholar
Barnes, HF. 1932. Studies of fluctuations in insect populations. I. The infestation of boardbalk wheat by the wheat blossom midges (Cecidomyidae). Journal of Animal Ecology 1: 1231CrossRefGoogle Scholar
Barnes, HF. 1953. The wheat blossom midges. New Biology 14: 82103Google Scholar
Barnes, HF. 1956. Gall midges of economic importance. Volume VII: gall midges of cereal crops. London: Crosby, Lockwood and Son LtdGoogle Scholar
Bowden, WM. 1959. The taxonomy and nomenclature of the wheats, barleys, and ryes and their wild relatives. Canadian Journal of Botany 37: 657–84CrossRefGoogle Scholar
Ding, H., Lamb, R.J., Ames, N. 2000. Inducible production of phenolic acids in wheat and antibiotic resistance to Sitodiplosis mosellana. Journal of Chemical Ecology 26: 969–85CrossRefGoogle Scholar
Elliott, R.H., Mann, LW. 1996. Susceptibility of red spring wheat, Triticum aestivum L. cv. Katepwa, during heading and anthesis to damage by wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). The Canadian Entomologist 128: 367–75CrossRefGoogle Scholar
Feldman, M. 1976. Wheats: Triticum spp. (Gramineae–Triticinae). pp 120–8 in Simmonds, N.W. (Ed), Evolution of crop plants. London: Longman Group LtdGoogle Scholar
Gagné, R.J., Doane, JF. 1999. The larval instars of the wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). Proceedings of the Entomological Society of Washington 101: 5763Google Scholar
Gupta, PK. 1991. Cytogenetics of wheat and its close wild relatives—Triticum and Aegilops. pp 243–62 in Gupta, P.K., Tsuchiya, T. (Eds), Chromosome engineering of plants: genetics, breeding, evolution. Part A. Amsterdam: ElsevierCrossRefGoogle Scholar
Harlan, JR. 1976. Genetic resources in wild relatives of crops. Crop Science 16: 329–33CrossRefGoogle Scholar
Harlan, J.R., Zohary, D. 1966. Distribution of wild wheats and barley. Science (Washington, DC) 153: 1074–80CrossRefGoogle ScholarPubMed
Harris, MK. 1980. Arthropod–plant interactions related to agriculture, emphasizing host plant resistance. pp 2351in Harris, M.K. (Ed), Biology and breeding for resistance to arthropods and pathogens in agricultural plants. College Station: Texas Agricultural Experiment StationGoogle Scholar
Holt, J., Birch, N. 1984. Taxonomy, evolution and domestication of Vicia in relation to aphid resistance. Annals of Applied Biology 105: 547–56CrossRefGoogle Scholar
Kennedy, G.G., Barbour, JD. 1992. Resistance variation in natural and managed systems. pp 1341in Fritz, R.S., Simms, E.L. (Eds), Plant resistance to herbivores and pathogens. Chicago: University of Chicago PressGoogle Scholar
Kimber, G., Sears, ER. 1987. Evolution in the genus Triticum and the origin of cultivated wheat. pp 154–64 in Heyne, E.G. (Ed), Wheat and wheat improvement, 2nd edition. Madison: American Society of AgronomyGoogle Scholar
Lamb, R.J., Wise, I.L., Olfert, O.O., Gavloski, J., Barker, PS. 1999. Distribution and seasonal abundance of Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat. The Canadian Entomologist 131: 387–97CrossRefGoogle Scholar
Lamb, R.J., Tucker, J.R., Wise, I.L., Smith, MAH. 2000 a. Trophic interaction between Sitodiplosis mosellana (Diptera: Cecidomyiidae) and spring wheat: implications for yield and quality. The Canadian Entomologist 132: 607–25CrossRefGoogle Scholar
Lamb, R.J., McKenzie, R.I.H., Wise, I.L., Barker, P.S., Smith, M.A.H., Olfert, OO. 2000 b. Resistance to Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat (Gramineae). The Canadian Entomologist 132: 591605CrossRefGoogle Scholar
Morris, R., Sears, ER. 1967. The cytogenetics of wheat and its relatives. pp 1988in Quisenberry, K.S., Reitz, L.P. (Eds), Wheat and wheat improvement. Madison: American Society of AgronomyGoogle Scholar
Morrison, LA. 1993. Taxonomy of the wheats: a commentary. pp 6571in Proceedings of the 8th International Wheat Genetics Symposium, Beijing, China, Volume 1Google Scholar
Olfert, O.O., Mukerji, M.K., Doane, JF. 1985. Relationship between infestation levels and yield loss caused by wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in spring wheat in Saskatchewan. The Canadian Entomologist 117: 593–8CrossRefGoogle Scholar
Reehar, MM. 1945. The wheat midge in the Pacific Northwest. U S Department of Agriculture Circular 732Google Scholar
Saks, ME. 1993. Variable host quality and evolution in the Mexican bean beetle. pp 329–50 in Kim, K.C., McPheron, B.A. (Eds), Evolution of insect pests: patterns of variation. New York: John Wiley & Sons, IncGoogle Scholar
SAS Institute Inc. 1990. SAS/STAT® user's guide, version 6. Volume 1. Cary: SAS Institute IncGoogle Scholar
Sotherton, N.W., van Emden, HF. 1982. Laboratory assessments of resistance to the aphids Sitobion avenae and Metopolophium dirhodum in three Triticum species and two modem wheat cultivars. Annals of Applied Biology 101: 99107CrossRefGoogle Scholar
Tottman, D.R., Makepeace, RJ. 1979. An explanation of the decimal code for the growth stages of cereals, with illustrations. Annals of Applied Biology 93: 221–34CrossRefGoogle Scholar
Webster, FM. 1891. The wheat midge, Diplosis tritici, Kirby. Bulletin of the Ohio Agricultural Experiment Station Series 24: 99114Google Scholar
Wright, A.T., Doane, JF. 1987. Wheat midge infestation of spring cereals in northwestern Saskatchewan. Canadian Journal of Plant Science 67: 117–20CrossRefGoogle Scholar