Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T15:13:37.712Z Has data issue: false hasContentIssue false

Diversity of insects associated with olive (Oleaceae) groves across a dryland climate gradient in Algeria

Published online by Cambridge University Press:  05 July 2019

Smail Chafaa
Affiliation:
Laboratory of Natural Resources and Management of Sensitive Environments “RNAMS,”University of Oum-El-Bouaghi, 04000 Oum-El-Bouaghi, Algeria
Fateh Mimeche
Affiliation:
Department of Agronomical Sciences, University of M’Sila, 28000 M’Sila, Algeria
Haroun Chenchouni*
Affiliation:
Laboratory of Natural Resources and Management of Sensitive Environments “RNAMS,”University of Oum-El-Bouaghi, 04000 Oum-El-Bouaghi, Algeria Department of Natural and Life Sciences, Faculty of Exact Sciences and Natural and Life Sciences, University of Tebessa, 12002 Tebessa, Algeria
*
1Corresponding author (e-mail: [email protected])

Abstract

This study investigated insect diversity of olive (Olea europaea Linnaeus (Oleaceae)) groves grown in arid and semiarid climates in northeastern Algeria. Using several sampling techniques, a total of 1326 insect specimens were collected and identified into 151 species, 124 genera, 65 families, and 10 orders. Hymenoptera and Coleoptera were quantitatively the most abundant, whereas the dominant functional feeding groups were phytophages then predators. The entomofauna included several olive pests such as Bactrocera oleae (Rossi) (Diptera: Tephritidae), Parlatoria oleae (Colvée) (Hemiptera: Diaspididae), Euphyllura olivina (Costa) (Hemiptera: Liviidae), and Liothrips oleae Costa (Thysanoptera: Phlaeothripidae). Although insect diversity parameters recorded for both observed and expected species richness were higher in olive groves grown under semiarid compared with arid climate, the completeness rate of species richness obtained using the nonparametric incidence estimators was higher in arid olive groves. Generalised linear models showed that the number of individuals and species richness varied significantly between climates (P < 0.01), whereas the variation of the rest of diversity parameters was not significant. Diversity traits of insect assemblage of each climatic region were positively correlated. Besides, the Mantel permutation test revealed similar patterns (r = 0.91, P < 0.0001) between correlation matrices of the two climates. When increasing the number of samples, species richness extrapolation revealed that diversity is expected to increase by 130% in olive groves grown under arid climate and 93% in semiarid climate. These increases are related to continuous appearance of rare and scarce insects as demonstrated by species rarefaction curves. Even with high evenness values of insect communities, similarity was low between climate indicating the rarity and scarcity of populations.

Type
Biodiversity and Evolution
Copyright
© Entomological Society of Canada 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Zoë Lindo

References

Amin, A.H., Helmi, A., El-Wan, E.A., and Youssef, A.S. 2013. Bionomic and life table parameters of olive psyllid, Euphyllura straminea on olive seedlings under three constant temperatures. Munis Entomology & Zoology, 8: 294304.Google Scholar
Arambourg, Y. 1966. La teigne de l’olivier. In Entomologie appliquée à l’agriculture. Tome 2, volume 2. Edited by Balachowsky, A.S.. Masson et Cie, Paris, France. Pp. 181193.Google Scholar
Auber, J.F. 1945. Atlas des coléoptères de France, Carabes, Staphylins, Dytiques, carabées. Fascicle 1, Boubée et Cie, Paris, France.Google Scholar
Auber, L. 1999. Atlas des coléoptères de France, Belgique et Suisse. Tome I. Boubée, Paris, France.Google Scholar
Barney, R.J. and Pass, B.C. 1986. Ground beetle (Coleoptera–Carabidae) population in Kentucky alfalfa and influence of tillage. Journal of Economic Entomology, 79: 511517. https://doi.org/10.1093/jee/79.2.511.CrossRefGoogle Scholar
Benhayoun, G. and Lazzeri, Y. 2007. L’olivier en Méditerranée, du symbole à l’économie. Harmattan, Paris, France.Google Scholar
Benkhelil, M.L. 1992. Les techniques de récoltes et de piégeage utilisées en entomologie terrestre. Office des Publications Universitaires, Algiers, Algeria.Google Scholar
Berland, L. 1999. Atlas des Hyménoptères de France Belgique et Suisse. Tome I and II. Boubée, Paris, France.Google Scholar
Bommarco, R., Kleijn, D., and Potts, S.G. 2013. Ecological intensification: harnessing ecosystem services for food security. Trends in Ecology & Evolution, 28: 230238. https://doi.org/10.1016/j.tree.2012.10.012.CrossRefGoogle Scholar
Bouchery, Y. and Jacky, F. 1982. Atlas des formes ailées des espèces courantes des pucerons. Institut National de la Recherche Agronomique, Paris, France.Google Scholar
Bradai, L., Bouallala, M.H., Bouziane, N.F., Zaoui, S., Neffar, S., and Chenchouni, H. 2015. An appraisal of eremophyte diversity and plant traits in a rocky desert of the Sahara. Folia Geobotanica, 50: 239252. https://doi.org/10.1007/s12224-015-9218-8.CrossRefGoogle Scholar
Carter, D.J. and Hargreves, B. 1988. Guide des chenilles d’Europe. Delachaux et Niestlé, Paris, France.Google Scholar
Chafaa, S. 2013. Contribution à l’étude de l’entomofaune de l’olivier, Olea europaea et de la dynamique des populations de la cochenille violette Parlatoria oleae Colvée, 1880 (Homoptera: Diaspididae) dans la région de Batna. Doctoral thesis. National Superior School of Agronomy, El-Harrach, Algeria.CrossRefGoogle Scholar
Chafaa, S., Biche, M., Chenchouni, H., Sellami, M, and Sibachir, A. 2013a. Cycle biologique de Parlatoria oleae (Hemiptera: Diaspididae) inféodée aux oliveraies dans une région aride. The Canadian Entomologist, 145: 398405. https://doi.org/10.4039/tce.2012.107.CrossRefGoogle Scholar
Chafaa, S., Biche, M., Chenchouni, H., Sellami, M, and Sibachir, A. 2013b. Effet du climat et de l’exposition sur la dynamique des populations de la cochenille violette, Parlatoria oleae Colvée (Hemiptera: Diaspididae), en conditions arides. Annales de la Société Entomologique de France, 49: 291297. https://doi.org/10.1080/00379271.2013.856203.CrossRefGoogle Scholar
Chao, A., Chazdon, R.L., Colwell, R.K., and Shen, T.-J. 2005. A new statistical approach for assessing compositional similarity based on incidence and abundance data. Ecology Letters, 8: 148159. https://doi.org/10.1111/j.1461-0248.2004.00707.x.CrossRefGoogle Scholar
Chatenet, G. 1990. Guide des coléoptères d’Europe. Delachaux et Niestlé, Paris, France.Google Scholar
Chenchouni, H. 2007. Diagnostic écologique d’un site propose Ramsar: Chott Djendli (Batna– Algérie). Engineer Dissertation in Ecology. University of Batna, Batna, Algeria. https://doi.org/10.13140/rg.2.2.30730.67523/1.CrossRefGoogle Scholar
Chenchouni, H. 2014. Diet of the little owl (Athene noctua) during the pre-reproductive period in a semi-arid Mediterranean region. Zoology and Ecology, 24: 314323. https://doi.org/10.1080/21658005.2014.965919.CrossRefGoogle Scholar
Chenchouni, H. 2017. Variation in white stork (Ciconia ciconia) diet along a climatic gradient and across rural-to-urban landscapes in North Africa. International Journal of Biometeorology, 61: 549564. https://doi.org/10.1007/s00484-016-1232-x.CrossRefGoogle Scholar
Chenchouni, H., Menasria, T., Neffar, S., Chafaa, S., Bradai, L., Chaibi, R., et al. 2015. Spatiotemporal diversity, structure and trophic guilds of insect assemblages in a semi-arid Sabkha ecosystem. PeerJ, 3: e860. https://doi.org/10.7717/peerj.860.CrossRefGoogle Scholar
Chermiti, B. 1992. Approche d’évaluation de la nocivité du Psylle de l’olivier Euphyllura olivina Costa (Homoptera, Aphalaridae). Olivae, 43: 3442.Google Scholar
Chopard, L. 1943. Faune de l’empire Français (Orthoptéroides de l’Afrique du Nord). Tome I. La rose, Paris, France.Google Scholar
Colas, G. 1974. Guide de l’entomologiste. N. Boubée, Paris, France.Google Scholar
Colwell, R.K. 2013. EstimateS: statistical estimation of species richness and shared species from samples. Version 9. Available from http://purl.oclc.org/estimates [accessed 14 April 2019].Google Scholar
Daane, K.M., Rice, R.E., Zalom, F.G., Barnett, W.W., and Johnson, M.W. 2005. Arthropod pests of olive. In Olive production manual, second edition. Edited by Sibbett, G.S. and Ferguson, L.. Publication 3353. University of California Agriculture and Natural Resources, Davis, California, United States of America. Pp. 105114.Google Scholar
Delvare, G. and Aberlenc, H.P. 1989. Les insectes d’Afrique et d’Amérique tropicale. Clé pour la reconnaissance des familles. France: Centre de coopération internationale en recherche agronomique pour le développement, Montpellier, France.Google Scholar
Dierl, W. and Ring, W. 1992. Guide des insectes. Delachaux et Niestlé, Paris, France.Google Scholar
Fabbri, A., Lambaradi, M., and Tokatli, Y.O. 2009. Olive breeding in breeding plantation tree crops: tropical species. Springer, New York, New York, United States of America.Google Scholar
Floate, K.D., Doane, J.F., and Gillott, C. 1990. Carabid predators of the wheat midge (Diptera: Cecidomyiidae) in Saskatchewan. Environmental Entomology, 19: 15031511. https://doi.org/10.1093/ee/19.5.1503.CrossRefGoogle Scholar
Fohouo, T.F.-N., Djonwangwé, D., Messi, J., and Brückner, D., 2007. Exploitation des fleurs de Entada africana, Eucalyptus camaldulensis, Psidium guajava et Trichillia emetica par Apis mellifera adansonii à Dang (Ngaoundéré, Cameroun). Cameroon Journal of Experimental Biology, 3: 5060.Google Scholar
Forister, M.L., Dyer, L.A., Singer, M.S., Stireman, J.O., and Lill, J.T. 2012. Revisiting the evolution of ecological specialization, with emphasis on insect–plant interactions. Ecology, 93: 981991.Google Scholar
Gaouar, N. 1996. Apports de la biologie des populations de l’olive Bactrocera = (Dacus) oleae Gml. l’optimisation de son contrôle dans la région de Tlemcen. Doctoral thesis. University of Tlemcen, Tlemcen, Algeria.Google Scholar
Haddad, N.M., Crutsinger, G.M., Gross, K., Haarstad, J., Knops, J.M., and Tilman, D. 2009. Plant species loss decreases arthropod diversity and shifts trophic structure. Ecology Letters, 12: 10291039. https://doi.org/10.1111/j.1461-0248.2009.01356.x.CrossRefGoogle Scholar
Holgado, M.G. and Gasparini, M.L. 2008. Insectos plaga del olivo y susenemigos naturales, second edition. Sociedad Entomologica Argentina, Mendoza, Argentina.Google Scholar
Idder-Ighili, H., Idder, M.A., Doumandji-Mitiche, B., and Chenchouni, H. 2015. Modeling the effects of climate on date palm scale (Parlatoria blanchardi) population dynamics during different phenological stages of life history under hot arid conditions. International Journal of Biometeorology, 59: 14251436. https://doi.org/10.1007/s00484-014-0952-z.CrossRefGoogle Scholar
Institut Technique de l’Arboriculture Fruitière et de la Vigne. 2010. Programme de développement de l’oléiculture et l’agrumiculture. Institut Technique de l’Arboriculture Fruitière et de la Vigne, Tessala El Merdja, Algeria.Google Scholar
Krid, S., Rhouma, A., Queseda, J.M., Penyalver, R., and Gargouri, A. 2009. Delineation of Pseudomonas savastanoi . savastanoi strains isolated in Tunisia by random-amplified polymorphic DNA analysis. Journal of Applied Microbiology, 106: 886894.CrossRefGoogle ScholarPubMed
Kromp, B. 1999. Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agriculture, Ecosystems and Environment, 74: 187228. https://doi.org/10.1016/S0167-8809(99)00037-7.CrossRefGoogle Scholar
Kumral, N.A., Kovanci, B., and Akbudak, B. 2005. Pheromone trap catches of the olive moth, Prays oleae (Bern.) (Lep., Plutellidae) in relation to olive phenology and degree-day models. Journal of Applied Entomology, 129: 375381. https://doi.org/10.1111/j.1439-0418.2005.00985.x.CrossRefGoogle Scholar
Leclant, F. 1999. Les aphides et la lutte intégrée en vergers. Bulletin Technique d’information France, 249: 264273.Google Scholar
Leraut, P. 2007. Le guide entomologique, plus de 5000 espèces européennes. Delachaux et niestlé, Paris, France.Google Scholar
Magurran, A.E. 2004. Measuring biological diversity. Wiley-Blackwell, Oxford, United Kingdom.Google Scholar
McGavin, G. 2007. Larousse nature en poche. Insectes et araignées. Larousse, Paris, France.Google Scholar
Meddad-Hamza, A., Hamza, N., Neffar, S., Beddiar, A., Gianinazzi, S., and Chenchouni, H. 2017. Spatiotemporal variation of arbuscular mycorrhizal fungal colonization in olive (Olea europaea L.) roots across a broad mesic-xeric climatic gradient in North Africa. Science of the Total Environment, 583C: 176189. https://doi.org/10.1016/j.scitotenv.2017.01.049.CrossRefGoogle Scholar
Mekahlia, M.N., Beddiar, A., and Chenchouni, H. 2013. Mycorrhizal dependency in the olive tree (Olea europaea) across a xeric climatic gradient. Advances in Environmental Biology, 7: 21662174.Google Scholar
Novotny, V., Miller, S. E., Baje, L., Balagawi, S., Basset, Y., Cizek, L., et al. 2010. Guild-specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. Journal of Animal Ecology, 79: 11931203. https://doi.org/10.1111/j.1365-2656.2010.01728.x.CrossRefGoogle Scholar
Orgeas, J. and Ponel, P. 2001. Organisation de la diversité des Coléoptères en milieu méditerranéen provençal perturbé par le feu. Revue d’écologie (Terre et vie), 56: 157171.Google Scholar
Perrier, P. 1927. La faune de la France illustrée–Coléoptères (première partie). Tome I. Delagrave, Paris, France.Google Scholar
Petacchi, R. and Minnocci, A. 1994. Impact of different Bactrocera oleae (Gmel) control strategies on olive-grove entomofauna. Acta Horticularae, 356: 399401. https://doi.org/10.17660/ActaHortic.1994.356.85 Google Scholar
Portevin, G., 1924. Ce qu’il faut savoir des insectes, volume III. Orthoptères, Hyménoptères, Diptères et insectes inférieurs. Paul Lechevalier, Paris, France.Google Scholar
Price, P.W., Denno, R.F., Eubanks, M.D., Finke, D.L., and Kaplan, I. 2011. Insect ecology: behavior, populations and communities. Cambridge University Press, Cambridge, United Kingdom.CrossRefGoogle Scholar
R Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.r-project.org [accessed 14 April 2019].Google Scholar
Remaudiere, G. and Seco Fernandez, V. 1990. Clés pour aider à la reconnaissance des ailés de pucerons piégés en région Méditerranéenne (Homoptera: Aphidoidae), volume 1, Universidad de Leo&combacute;n, Leo&combacute;n, France.Google Scholar
Sánchez-Fernández, D., Abellán, P., Mellado, A., Velasco, J., and Millán, A. 2006. Are water beetles good indicators of biodiversity in Mediterranean aquatic ecosystems? The case of the Segura river basin (SE Spain). Biodiversity and Conservation, 15: 45074520. https://doi.org/10.1007/s10531-005-5101-x.CrossRefGoogle Scholar
Schnathorst, W.C. 1981. Life cycle and epidemiology of Verticillium . In Fungal wilt diseases of plants. Edited by Mace, M.E., Bell, A.A., and Beckman, C.H.. Academic Press, New York, New York, United States of America. Pp. 81111.Google Scholar
Spanedda, A.F. and Pucci, C. 2006. Performance comparison between two forecasting models of infestation caused by olive fruit fly (Bactrocera oleae). Pomologia Croatica, 12: 314.Google Scholar
Stary, P. 1979. Aphid parasites (Hymenoptera: Aphididae) of the central Asian area. Transactions of the Czechoslovak Academy of Sciences, Series of Mathematical and Natural Sciences, 89: 1116.Google Scholar
Wade, M.R., Scholz, B.C., Lloyd, R.J., Cleary, A.J., Franzmann, B.A., and Zalucki, M.P. 2006. Temporal variation in arthropod sampling effectiveness: the case for using the beat sheet method in cotton. Entomologia Experimentalis et Applicata, 120: 139153. https://doi.org/10.1111/j.1570-7458.2006.00439.x.CrossRefGoogle Scholar
Supplementary material: PDF

Chafaa et al. supplementary material

Table S2

Download Chafaa et al. supplementary material(PDF)
PDF 90.6 KB
Supplementary material: PDF

Chafaa et al. supplementary material

Table S1

Download Chafaa et al. supplementary material(PDF)
PDF 73.2 KB