Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T13:11:54.697Z Has data issue: false hasContentIssue false

DISTURBANCE OF ECLOSION SEQUENCE IN HYBRID LEPIDOPTERA

Published online by Cambridge University Press:  31 May 2012

Charles G. Oliver
Affiliation:
R. D. 1, Box 78, Scottdale, Pennsylvania 15683

Abstract

Some interspecific and interpopulation Lepidoptera and Orthoptera hybrids show a syndrome of developmental abnormalities referred to here as the “sequence effect.” In normal within population broods of Lepidoptera males develop slightly faster than females, but in crosses showing the sequence effect, females in one direction of the cross develop faster and in the reciprocal cross much more slowly than their male siblings. In some cases the environmentally induced diapause of the females may differ strikingly from that of their male siblings. Development rate and diapause in these species appear to be controlled by a sex-linked coadapted gene complex. Expression of the sequence effect may result from a loss of a species- or population-specific balance between regulatory and secretory portions of this complex, resulting in hormonal abnormalities which are more likely to be expressed in the heterogametic sex (females in Lepidoptera, males in Orthoptera).

Résumé

Des hybrides interspécifiques et interpopulations de certains Lépidoptères et Orthoptères sont affectés par un syndrome d'anomalies du développement désigné ici comme étant un “effet de séquence.” Chez les portées intra-populations normales de Lépidoptères, les mâles se développent légèrement plus vite que les femelles, mais à la suite de croisements produisant "l'effet de séquence", les femelles issues du croisement dans un sens se développent plus rapidement, et celles issues du croisement réciproque, plus lentement, que les mâles de la même portée. Dans certains cas, la diapause induite par l'environnement peut être très différente chez les mâles et les femelles de la même portée. La vitesse de développement et la diapause chez ces espèces semblent être contrôlées par un complexe coadapté de gènes liés au sexe. L'expression de "l'effet de séquence" pourrait résulter de la perte d'équilibre spécifique à l'espèce ou à la population, entre la partie régulatrice et la partie secrétaire de ce complexe, causant des anomalies hormonales plus susceptibles de se manifester chez le sexe hétérogamétique (femelles chez les Lépidoptères, mâles chez les Orthoptères).

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ae, S.A. 1959. A study of hybrids in Colias (Lepidoptera: Pieridae). Evolution 13: 6488.Google Scholar
Bacheler, J. S. and Habeck, D. H.. 1974. Biology and hybridization of Apantesis phalerata and A. radians (Lepidoptera: Arctiidae). Ann. ent. Soc. Am. 67: 971975.Google Scholar
Bowden, S. R. 1954. Timing of imaginal development in male and female hybrid Pieridae (Lep.). The Entomologist 86: 255264.Google Scholar
Bowden, S. R. 1957. Diapause in female hybrids: Pieris napi adalwinda and related sub-species. The Entomologist 90: 247–254, 273281.Google Scholar
Bowden, S. R. 1972. ‘Pieris napi’ (Lep., Pieridae) in America: genetic imbalance in hybrids. Proc. Brit. ent. nat. Hist. Soc. 4: 103117.Google Scholar
Byers, J. R. and Lafontaine, J. D.. 1982. Biosystematics of the genus Euxoa (Lepidoptera: Noctuidae) XVI. Comparative biology and experimental taxonomy of four subspecies of Euxoa comosa. Can. Ent. 114: 551565.CrossRefGoogle Scholar
Clarke, C. A. and Sheppard, P. M.. 1955 a. A preliminary report on the genetics of the machaon group of swallowtail butterflies. Evolution 9: 182201.Google Scholar
Clarke, C. A. and Sheppard, P. M.. 1955 b. The breeding in captivity of the hybrid Papilio rutulus ♀ × Papilio glaucus ♂. Lepid. News 9: 4648.Google Scholar
Clarke, C. A. and Sheppard, P. M.. 1956 a. A further report on the genetics of the machaon group of swallowtail butterflies. Evolution 10: 6673.Google Scholar
Clarke, C. A. and Sheppard, P. M.. 1956 b. The breeding in captivility of the hybrid Papilio glaucus ♀ × Papilio eurymedon. Lepid. News 11: 201205.Google Scholar
Cocault, R., Lecoq, G., and Vauttoux, R.. 1980. Successful hybridization between Graellsia isabellae Graells ♂ (French Alps) and Actias luna Linné ♀ (U.S.A.). News Lepid. Soc. 1980(1): 5.Google Scholar
Crotch, W. J. B. 1956. A Silkmoth Rearer's Handbook. Amateur Entomol. Soc. 165 pp.Google Scholar
Endler, J. A. 1977. Geographic Variation, Speciation, and Clines. Princeton U. Press, Princeton, N.J.246 pp.Google Scholar
Ferguson, D. C. 1971. Bombycoidae: Saturniidae (Part). The Moths of North America North of Mexico (Ferguson, D. C. et al. , Eds.), Fasc. 20.2A. Classey, and R. B. D. Publications, London. 153 pp.Google Scholar
Gelman, D. B. and Hayes, D. K.. 1980. Physical and biochemical factors affecting diapause in insects, especially in the European corn borer, Ostrinia nubilalis. Physiol. Ent. 5: 367383.Google Scholar
Grula, J. and Taylor, O. R. Jr., 1981. Some characteristics of hybrids derived from the sulfur butterflies Colias eurytheme and C. philodice: phenotypic effects of the X-chromosome. Evolution 34: 673687.Google Scholar
Haldane, J. B. S. 1922. Sex ratio and unisexual sterility in hybrid animals. J. Genet. 12: 101109.CrossRefGoogle Scholar
Harrison, J. W. H. 1913. The Hybrid Bistoninae. Oberthür, Rennes. 326 pp.Google Scholar
Hedrick, P. W. and McDonald, J. F.. 1980. Regulatory gene adaptation: an evolutionary model. Heredity 45: 8397.CrossRefGoogle ScholarPubMed
Jarvis, F. V. L. 1966. The genus Aricia (Lep., Rhopalocera) in Britain. Proc. S. Lond. ent. nat. Hist. Soc. 1966: 3760.Google Scholar
Langston, D. T. and Watson, T. F.. 1975. Influence of genetic selection on diapause termination of the pink bollworm. Ann. ent. Soc. Am. 68: 11021106.Google Scholar
Masaki, S. 1978. Seasonal and latitudinal adaptations in the life cycles of crickets. In Evolution of Insect Migration and Diapause (Dingle, H., Ed.). Springer-Verlag, N.Y.284 pp.Google Scholar
Oliver, C. G. 1972. Genetic and phenotypic differentiation and geographic distance in four species of Lepidoptera. Evolution 26: 221241.Google Scholar
Oliver, C. G. 1977. Genetic incompatibility between populations of the nymphalid butterfly Boloria selene from England and the United States. Heredity 39: 279285.Google Scholar
Oliver, C. G. 1978. Experimental hybridization between the nymphalid butterflies Phyciodes tharos and P. campestris montana. Evolution 32: 594601.Google Scholar
Oliver, C. G. 1979 a. Experimental hybridization between Phyciodes tharos and P. batesii (Nymphalidae). J. Lepid. Soc. 33: 620.Google Scholar
Oliver, C. G. 1979 b. Genetic differentiation and hybrid viability within and between some Lepidoptera species. Am. Nat. 114: 681694.Google Scholar
Oliver, C. G. 1980. Phenotypic differentiation and hybrid breakdown within Phyciodes “tharos” (Lepidoptera: Nymphalidae) in the northeastern United States. Ann. ent. Soc. Am. 73: 715721.Google Scholar
Oliver, C. G. 1982. Experimental hybridization between Phyciodes tharos and P. phaon (Nymphalidae). J. Lepid. Soc. 36: 121131.Google Scholar
Peigler, R. S. 1977. Hybridization of Callosamia (Saturniidae). J. Lepid. Soc. 31: 2334.Google Scholar
Peigler, R. S. 1980. Demonstration of reproductive isolating mechanisms in Callosamia (Saturniidae) by artificial hybridization. J. Res. Lepid. 19: 7281.Google Scholar
Rabb, R. L. 1969. Diapause characteristics of two geographical strains of the tobacco hornworm and their reciprocal crosses. Ann. ent. Soc. Am. 62: 12521256.Google Scholar
Remington, C. L. 1956. Genetics of populations of Lepidoptera. Proc. 10th int. Congr. Ent. 2: 787805.Google Scholar
Remington, C. L. 1968. A new sibling Papilio from the Rocky Mountains, with genetic and biological notes (Insecta, Lepidoptera). Postilla 119: 140.Google Scholar
Riotte, J. C. E. and Peigler, R. S.. 1980. A revision of the American genus Anisota (Saturniidae). J. Res. Lepid. 19: 101180.Google Scholar
Singer, M. C. 1982. Sexual selection for small size in male butterflies. Am. Nat. 119: 440443.Google Scholar
Wiklund, C. and Solbreck, C.. 1982. Adaptive versus incidental explanations for the occurrence of protandry in the butterfly, Leptidea sinapis L. Evolution 36: 5662.Google Scholar