Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T06:03:54.406Z Has data issue: false hasContentIssue false

DISTRIBUTION AND SAMPLING OF ROOT WEEVIL LARVAE IN YOUNG ORNAMENTAL CONIFER PLANTATIONS

Published online by Cambridge University Press:  31 May 2012

J.P. Brandt
Affiliation:
Natural Resources Canada, Northwest Region, 5320 - 122 Street, Edmonton, Alberta, Canada T6H 3S5
S.M. Smith
Affiliation:
Faculty of Forestry, University of Toronto, Earth Sciences Centre, 33 Willcocks Street, Toronto, Ontario, Canada M5S 3B3
M. Hubbes
Affiliation:
Faculty of Forestry, University of Toronto, Earth Sciences Centre, 33 Willcocks Street, Toronto, Ontario, Canada M5S 3B3

Abstract

We determined the distribution of root weevil larvae feeding on the roots of young ornamental conifers in field studies using a new non-destructive sampling technique. Most root weevil larvae fed on the roots during summer, fall, and late spring with significantly more larvae found at 10 cm than at 20 and 30 cm and more at 20 cm than at 30 cm. Larvae moved down into the soil to overwinter and moved closer to the surface (<15 cm) in the spring. Soil samples predicted the population density of larvae under individual trees. Four samples (0.0076 m3), 9 cm in diameter by 30 cm long, taken equidistantly 20 cm from the tree stem provided the best estimate. The equation, T = 64.04 M, where T is the total number of larvae beneath a tree, and M is the mean number of root weevil larvae from four soil samples, described the linear relationship between the number of larvae in soil samples and the total population of larvae beneath a tree. Implications for the timing and location of sampling and control measures are discussed.

Résumé

Nous avons étudié la répartition des larves de charançons dans les racines de jeunes conifères ornementaux au moyen d’une technique d’échantillonnage non perturbante. La plupart des larves se nourrissaient de racines durant l’été, l’automne et à la fin du printemps et il y avait significativement plus de larves à 10 cm qu’à 20 ou à 30 cm et plus à 20 qu’à 30 cm de profondeur. Les larves s’enfonçaient dans le sol pour passer l’hiver et revenaient vers la surface (<15 cm) au printemps. Des échantillons de sol ont servi à faire des prédictions sur la densité des larves au pied d’arbres en particulier. Le prélèvement de quatre échantillons (0,0076 m3) de 9 cm de diamètre et de 30 cm de longueur à équidistances de 20 cm du tronc est la stratégie qui a donné les meilleures estimations. L’équation T = 64,04 M, où T est le nombre total de larves sous un arbre et M, le nombre moyen de larves de charançons des racines dans quatre échantillons de sol, décrit la relation linéaire entre le nombre de larves dans les échantillons de sol et la population totale de larves sous un arbre. Le moment idéal et le site optimal d’échantillonnage et les mesures de lutte à utiliser contre les charançons font l’objet d’une discussion.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borg, A. 1981. Viveln Barypithes pellucidus Boh., en liten skadegorare pa jordgubbar. Vaxtskyddsnotiser 45: 99101.Google Scholar
Brandt, J.P. 1992. Management of Root Weevils as Pests of Ornamental Conifer Nursery Stock with Particular Reference to Otiorhynchus ovatus (L.) (Coleoptera: Curculionidae). M.Sc.F. thesis, Graduate Department of Forestry, University of Toronto, Toronto, Ont.107 pp.Google Scholar
Browne, F.G. 1968. Pests and Diseases of Forest Plantation Trees. An Annotated List of the Principal Species Occurring in the British Commonwealth. Clarendon Press, Oxford, Great Britain. 1330 pp.Google Scholar
Campbell, J.M., Sarazin, M.J., and Lyons, D.B.. 1989. Canadian Beetles (Coleoptera) Injurious to Crops, Ornamentals, Stored Products, and Buildings. Agriculture Canada, Research Branch, Publication 1826: 491 pp. Ottawa, Ont.Google Scholar
Emenegger, D.B., and Berry, R.E.. 1978. Biology of strawberry root weevil on peppermint in western Oregon. Environmental Entomology 7: 495498.CrossRefGoogle Scholar
Gambrell, F.L. 1938. The strawberry root weevil as a pest of conifers in nursery plantings. Journal of Economic Entomology 31: 107113.CrossRefGoogle Scholar
Garth, G.S., and Shanks, C.H.. 1978. Some factors affecting infestation of strawberry fields by the black vine weevil in western Washington. Journal of Economic Entomology 71: 443448.CrossRefGoogle Scholar
Georgis, R., and Poinar, G.O.. 1983 a. Effect of soil texture on the distribution and infectivity of Neoaplectana carpocapsae (Nematoda: Steinernematidae). Journal of Nematology 15: 308311.Google ScholarPubMed
Georgis, R., and Poinar, G.O.. 1983 b. Effect of soil texture on the distribution and infectivity of Neoaplectana glaseri (Nematoda: Steinemematidae). Journal of Nematology 15: 329332.Google Scholar
Georgis, R., and Poinar, G.O.. 1983 c. Vertical migration of Heterorhabditis bacteriophora and H. heliothidis (Nematoda: Heterorhabditidae) in sandy loam soil. Journal of Nematology 15: 652654.Google Scholar
Harcourt, D.G., and Binns, M.R.. 1989. Sampling technique for larvae of the alfalfa snout beetle, Otiorhynchus ligustici (Coleoptera: Curculionidae). The Great Lakes Entomologist 22: 121126.Google Scholar
Harris, C.R. 1964. Influence of soil moisture on the toxicity of insecticides in a mineral soil to insects. Journal of Economic Entomology 57: 946950.CrossRefGoogle Scholar
Harris, C.R. 1966. Influence of soil type on the activity of insecticides in soil. Journal of Economic Entomology 59: 12211225.CrossRefGoogle Scholar
Mellors, W.K., Follett, P.A., and Gyrisco, G.G.. 1982. Double-depth sampling for alfalfa snout beetle larvae, Otiorhynchus ligustici (Coleoptera: Curculionidae). The Canadian Entomologist 114: 11711174.CrossRefGoogle Scholar
Montgomery, M.E., Musick, G.J., Polivka, J.B., and Nielsen, D.G.. 1979. Modifiable washing-flotation method for separation of insect eggs and larvae from soil. Journal of Economic Entomology 72: 6769.CrossRefGoogle Scholar
Moyle, P.L., and Kaya, H.K.. 1981. Dispersal and infectivity of the entomogenus nematode, Neoaplectana carpocapsae Weiser (Rhabditida: Steinernematidae), in sand. Journal of Nematology 13: 295300.Google Scholar
Nielsen, D.G., and Boggs, J.F.. 1985. Influence of soil type and moisture on toxicity of insecticides to first-instar black vine weevil (Coleoptera: Curculionidae). Journal of Economic Entomology 78: 753756.CrossRefGoogle Scholar
Ontario Ministry of Agriculture and Food. 1992. Agricultural Statistics for Ontario, 1991. Ontario Ministry of Agriculture and Food, Statistical Services Unit, Policy Analysis Branch, Publication 20: 156 pp. Toronto, Ont.Google Scholar
SAS Institute Inc. 1989. SAS/STAT User's Guide, Version 6, 4th ed., vol. 2. SAS Institute Inc., Cary, NC. 846 pp.Google Scholar
Stocks, J.B. 1938. Weevil damage in nursery. Quarterly Journal of Forestry 32: 201202.Google Scholar
Treherne, R.C. 1912. Life history of Otiorhynchus ovatus, the strawberry root weevil, under Lower Fraser conditions. Proceedings of the Entomological Society of British Columbia 1912: 4150.Google Scholar
Treherne, R.C. 1914. The Strawberry Root Weevil (Otiorhynchus ovatus Linn.) in British Columbia with Notes on Other Insects Attacking Strawberry Plants in the Lower Fraser Valley. Dominion of Canada, Department of Agriculture, Experimental Farms, Division of Entomology, Entomological Bulletin 8: 44 pp. Ottawa, Ont.Google Scholar
Wilcox, J., Mote, D.C., and Childs, L.. 1934. The Root-Weevils Injurious to Strawberries in Oregon. Oregon State Agricultural College, Agricultural Experiment Station, Station Bulletin 330: 109 pp. Corvallis, OR.Google Scholar
Wilkinson, L. 1990. SYSTAT: The System for Statistics. SYSTAT Inc., Evanston, IL. 676 pp.Google Scholar