Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T04:14:50.990Z Has data issue: false hasContentIssue false

DISPERSAL OF TOMICUS PINIPERDA (COLEOPTERA: SCOLYTIDAE) FROM OPERATIONAL AND SIMULATED MILL YARDS

Published online by Cambridge University Press:  31 May 2012

T.M. Poland*
Affiliation:
North Central Research Station, USDA Forest Service, 1407 South Harrison Road, Room 220, Michigan State University, East Lansing, Michigan, United States 48823
R.A. Haack
Affiliation:
North Central Research Station, USDA Forest Service, 1407 South Harrison Road, Room 220, Michigan State University, East Lansing, Michigan, United States 48823
T.R. Petrice
Affiliation:
North Central Research Station, USDA Forest Service, 1407 South Harrison Road, Room 220, Michigan State University, East Lansing, Michigan, United States 48823
C.S. Sadof
Affiliation:
Department of Entomology, 1158 Smith Hall, Purdue University, West Lafayette, Indiana, United States 47907
D.W. Onstad
Affiliation:
Department of Natural Resources and Environmental Sciences, University of Illinois, 1201 South Dorner Drive, Urbana, Illinois, United States 61801
*
1 Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

The pine shoot beetle, Tomicus piniperda (L.), is an exotic pest that is regulated by federal quarantines in the United States and Canada. Mark–release–recapture experiments were performed with infested logs coated with fluorescent powder to determine if overwintering beetles in logs would leave a mill yard if infested logs were transported to sawmills in uninfested areas. Overwintering T. piniperda adults were marked with powder as they emerged in spring. Dispersal studies were conducted in four simulated mill yards and five operational sawmills to determine whether T. piniperda would colonize only the log pile in which they overwintered, fly to nearby log piles, or disperse beyond the mill yard. Each simulated mill yard was composed of 36 uninfested red pine logs, Pinus resinosa Ait. (Pinaceae), and 12 α-pinene-baited funnel traps set up to 100 m from a central release pile of six uninfested red pine and nine infested logs of Scotch pine, Pinus sylvestris L. At the five operational sawmills, baited funnel traps were set up to 400 m outside of each mill yard. Overall, 482 T. piniperda galleries were found on the experimental logs recovered from the four simulated mill yards combined. Tomicus piniperda adults dispersed and attacked the most distant logs at 100 m from the release point in the simulated mill yards. Likewise, adults were captured in baited funnel traps at distances up to 230 m in simulated mill yards and 250 m around operational sawmills. Although numbers of recaptured T. piniperda were generally low, in all cases some adults dispersed outside the mill yards despite the presence of abundant suitable breeding material. Therefore, logs containing overwintering adults pose a risk of spreading T. piniperda if not processed prior to initiation of spring flight.

Résumé

Le scolyte Tomicus piniperda (L.) est un parasite exotique dont les dommages sont limités grâce à des programmes fédéraux de quarantaine aux États-Unis et au Canada. Des expériences de marquage–recapture au moyen de troncs infestés recouverts d’une poudre fluorescente ont été mises au point pour déterminer si les scolytes qui passent normalement l’hiver dans les troncs quitteraient la cour à bois si les troncs infestés étaient transportés à des moulins à scie dans des zones non infestées. Des T. piniperda ont été marqués de poudre fluorescente au moment de leur émergence au printemps. Des études de dispersion ont été entreprises dans quatre cours à bois simulées et dans cinq moulins à scie actifs pour déterminer si les scolytes coloniseraient seulement la pile de troncs où ils ont passé l’hiver, envahiraient des piles avoisinantes ou quitteraient la cour à bois. Chaque cour à bois simulée comptait 36 troncs sains de pin rouge, Pinus resinosa Ait. (Pinaceae), et 12 pièges à entonnoir garnis d’α-pinène disposés à 100 m d’une pile centrale de 6 troncs sains de pins rouges et de 9 troncs infestés de pins sylvestres, Pinus sylvestris L. Près des cinq moulins à scie actifs, les pièges à entonnoirs garnis ont été installés jusqu’à 400 m au-delà des limites des cours à bois. Au total, 482 galeries de T. piniperda ont été dénombrés dans les troncs expérimentaux récupérés dans les quatre cours à bois simulées combinées. Les scolytes adultes ont quitté leurs troncs d’origine et ont attaqué d’autres troncs situés à 100 m de leur point de libération dans les cours à bois simulées. De même, des adultes ont été capturés dans les pièges à entonnoirs garnis jusqu’à 230 m de distance dans les cours à bois et jusqu’à 250 m des moulins à scie actifs. Bien que le nombre de scolytes recapturés ait été plutôt faible, dans tous les cas, des adultes se sont dispersés au-delà des cours à bois, en dépit de l’abondance de sites de reproduction adéquats à l’intérieur de ces cours. Il faut conclure que les troncs contenant des adultes pendant l’hiver constituent un risque d’infestation de scolytes s’ils ne sont pas traités avant le début de l’envol de printemps.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakke, A. 1968. Ecological studies on bark beetles (Col. Scolytidae) associated with Scots pine (Pinus sylvestris L.) in Norway with particular reference to the influence of temperature. Meddelelser fra det Norske Skogforsksvesen 21: 443602Google Scholar
Barak, A.V., McGrevy, D., Tokaya, G. 2000. Dispersal and re-capture of marked, overwintering Tomicus piniperda (L.) (Coleoptera: Scolytidae) from Scotch pine bolts. Great Lakes Entomologist. In pressGoogle Scholar
Byers, J.A. 1991. Attraction of bark beetles, Tomicus piniperda, Hylurgops palliatus, and Trypodendron domesticum and other insects to short-chain alcohols and monoterpenes. Journal of Chemical Ecology 18: 2385–402CrossRefGoogle Scholar
Byers, J.A., Lanne, B.S., Lofqvist, J., Schlyter, F., Bergstrom, G. 1985. Olfactory recognition of host-tree susceptibility by pine shoot beetles. Naturwissenschaften 72: 324CrossRefGoogle Scholar
Byers, J.A., Anderbrandt, O., Lofqvist, J. 1989. Effective trapping radius: a method for comparing species attractants and determining densities of flying insects. Journal of Chemical Ecology 15: 749–65CrossRefGoogle ScholarPubMed
Cook, S.P., Hain, F.P. 1992. The influence of self-marking with fluorescent powders on adult bark beetles (Coleoptera: Scolytidae). Journal of Entomological Science 27: 269–79CrossRefGoogle Scholar
Czerwinski, E. 1998. European pine shoot beetle. pp. 56in End of Season Report, Forest Health Unit, Ontario Ministry of Natural Resources, Sault Ste. MarieGoogle Scholar
Czokajlo, D. 1998. Semiochemicals for the larger pine shoot beetle (Tomicus piniperda L.) and its clerid predators. Ph.D. dissertation, State University of New York, Syracuse, New YorkGoogle Scholar
Czokajlo, D., Wink, R.A., Warren, J.C., Teale, S.A. 1997. Growth reduction of Scots pine, Pinus sylvestris L., caused by the larger pine shoot beetle, Tomicus piniperda (L.) (Col., Scolytidae) in New York State. Canadian Journal of Forest Research 27: 1394–7CrossRefGoogle Scholar
Eidmann, H.H. 1992. Impact of bark beetles on forests and forestry in Sweden. Journal of Applied Entomology 114: 193200CrossRefGoogle Scholar
Haack, R.A., Lawrence, R.K. 1997. Highlights of Forest Service research on Tomicus piniperda: 1992–1996. pp. 111–8 in Proceedings of the 1997 Japanese Beetle and the Pine Shoot Beetle Regulatory Review, Louisville, Kentucky, 24–26 February 1997. Riverdale: US Department of Agriculture Animal and Plant Health Inspection ServiceGoogle Scholar
Haack, R.A., Lawrence, R.K., McCullough, D.G., Sadof, C.S. 1997. Tomicus piniperda in North America: an integrated response to new exotic scolytid. pp. 6272in Gregoire, J.C., Liebhold, A.M., Stephen, F.M., Day, K.R., Salom, S.M. (Eds), Proceedings: Integrating Cultural Tactics into the Management of Bark Beetle and Reforestation Pests. US Department of Agriculture Forest Service General Technical Report NE–236Google Scholar
Hui, Y., Lieutier, F. 1997. Shoot aggregation by Tomicus piniperda L (Col: Scolytidae) in Yunnan, southwestern China. Annales des Sciences Forestières 54: 635–41CrossRefGoogle Scholar
Långström, B. 1980. Distribution of pine shoot beetle attacks within the crown of Scots pine. Studia Forestalia Suecica 154Google Scholar
Långström, B., Hellqvist, C. 1985. Pinus contorta as a potential host for Tomicus piniperda L. and T. minor (Hart.) (Col., Scolytidae) in Sweden. Journal of Applied Entomology 99: 174–81Google Scholar
Långström, B., Hellqvist, C. 1991. Shoot damage and growth losses following three years of Tomicus attacks in Scots pine stands close to a timber storage site. Silva Fennica 25: 133–45CrossRefGoogle Scholar
Långström, B., Hellqvist, C. 1993. Induced and spontaneous attacks by pine shoot beetles on young Scots pine trees: tree mortality and beetle performance. Journal of Applied Entomology 115: 2536CrossRefGoogle Scholar
Långström, B., Lieutier, F., Hellqvist, C., Vouland, G. 1995. North American pines as hosts for Tomicus piniperda (L.) (Col., Scolytidae) in France and Sweden. pp. 547–57 in Hain, F.P., Salom, S.M., Ravlin, W.F., Payne, T.L., and Raffa, K.F. (Eds), Behavior, Population Dynamics and Control of Forest Insects, Proceedings of the Joint IUFRO Conference for Working Parties S2.07-05 and S2.07-06, 6–11 February 1994, Maui, Hawaii. Wooster: Ohio State University PressGoogle Scholar
Lawrence, R.K., Haack, R.A. 1995. Susceptibility of selected species of North American pines to shoot feeding by an Old World scolytid: Tomicus piniperda. pp. 536–46 in Hain, F.P., Salom, S.M., Ravlin, W.F., Payne, T.L., and Raffa, K.F. (Eds), Behavior, Population Dynamics and Control of Forest Insects, Proceedings of the Joint IUFRO Conference for Working Parties S2.07-05 and S2.07-06, 6–11 February 1994, Maui, Hawaii. Wooster: Ohio State University PressGoogle Scholar
Linton, D.A., Safranyik, L., McMullen, L.H., Betts, R. 1987. Field techniques for rearing and marking mountain pine beetle for use in dispersal studies. Journal of the Entomological Society of British Columbia 84: 53–8Google Scholar
McMullen, L.H., Safranyik, L., Linton, D.A., Betts, R. 1988. Survival of self-marked mountain pine beetles emerged from logs dusted with fluorescent powder. Journal of the Entomological Society of British Columbia 85: 25–8Google Scholar
NOAA (National Oceanic and Atmospheric Adminstration). 1998 a. Climatological data: Michigan, February 1998. 113(2). National Climatic Data Center, Asheville, North CarolinaGoogle Scholar
NOAA (National Oceanic and Atmospheric Adminstration). 1998 b. Climatological data: Michigan, March 1998. 113(3). National Climatic Data Center, Asheville, North CarolinaGoogle Scholar
Saarenmaa, H. 1989. A model for the timing of swarming of Tomicus piniperda (Coleoptera: Scolytidae). Holarctic Ecology 12: 441–4Google Scholar
Sadof, C.S., Waltz, R.D., Kellam, C.D. 1994. Differential shoot feeding by adult Tomicus piniperda (Coleoptera: Scolytidae) in mixed stands of native and introduced pines in Indiana. Great Lakes Entomologist 27: 223–8Google Scholar
Salom, S.M., McLean, J.A. 1990. Dispersal of Trypodendron lineatum (Olivier) within a valley setting. The Canadian Entomologist 122: 4358CrossRefGoogle Scholar
Salom, S.M., McLean, J.A. 1991. Environmental influence on dispersal of Typodendron lineatum (Coleoptera: Scolytidae). Environmental Entomology 20: 565–76CrossRefGoogle Scholar
Salonen, K. 1973. On the life cycle, especially on the reproductive biology of Blastophagus piniperda L. (Col., Scolytidae). Acta Forestalia Fennica 127: 170Google Scholar
SAS Institute Inc. 1990. SAS system for personal computers, release 6.04. Cary: SAS Institute Inc.Google Scholar
Sauvard, D., Lieutier, F., Levieux, J. 1987. Spatial distribution and dispersal of Tomicus piniperda L. (Coleoptera Scolytidae) in the forest of Orléans (France). Annales des Sciences Forestières 44: 417–34CrossRefGoogle Scholar
Schlyter, F. 1992. Sampling range, attraction range, and effective attraction radius: estimates of trap efficiency and communication distance in coleopteran pheromone and host attractant systems. Journal of Applied Entomology 114: 439–54CrossRefGoogle Scholar
Schmitz, R.F., Berryman, A.A., Safranyik, L. 1980. Dispersal of pine engraver beetles in second growth ponderosa pine forests. pp. 4150in Proceedings of the 2nd IUFRO Conference on Dispersal of Forest Insects: Evaluation, Theory and Management Implications. Pullman: Washington State UniversityGoogle Scholar
Schroeder, L.M. 1988. Attraction of the bark beetle Tomicus piniperda and some other bark- and wood-living beetles to the host volatiles α-pinene and ethanol. Entomologia Experimentalis et Applicata 46: 203–10CrossRefGoogle Scholar
Schroeder, L.M., Eidmann, H.H. 1987. Gallery initiation by Tomicus piniperda (Coleoptera: Scolytidae) on Scots pine trees baited with host volatiles. Journal of Chemical Ecology 13: 1591–9CrossRefGoogle Scholar
Tunset, K., Nilssen, A.C., Andersen, J. 1993. Primary attraction in host recognition of coniferous bark beetles and bark weevils (Col., Scolytidae and Curculionidae). Journal of Applied Entomology 115: 155–69CrossRefGoogle Scholar
Turchin, P. 1998. Quantitiative analysis of movement: measuring and modeling population redistribution in animals and plants. Sinauer Associates, Inc., Sunderland, MassachusettsGoogle Scholar
Turchin, P., Odendaal, F.J. 1996. Measuring the effective sampling area of a pheromone trap for monitoring population density of southern pine beetle (Coleoptera: Scolytidae). Environmental Entomology 25: 582–8CrossRefGoogle Scholar
Turchin, P., Thoeny, W.T. 1993. Quantifying dispersal of southern pine beetles with mark–recapture experiments and a diffusion model. Ecological Applications 3: 187–98CrossRefGoogle Scholar
US Department of Agriculture Animal and Plant Health Inspection Service. 1992. 7 CFR Part 301 – pine shoot beetle. Federal Register, 19 November 1992, 57 (224): 54492–9Google Scholar
Wolfram Research. 1999, Mathematica: a system for doing mathematics by computer. Version 4. Redwood City: Addison-WesleyGoogle Scholar
Wollerman, E.H. 1979. Dispersion and invasion of Scolytus multistriatus in response to pheromone. Environmental Entomology 8: 15CrossRefGoogle Scholar
Ye, H. 1991. On the bionomy of Tomicus piniperda L. (Col., Scolytidae) in the Kunming region of China. Journal of Applied Entomology 112: 366–9Google Scholar
Ye, H. 1997. Mass attack by Tomicus piniperda L. (Col., Scolytidae) on Pinus yunnanensis trees in Kunming region, southwestern China. pp. 225–7 in Gregoire, J.C., Liebhold, A.M., Stephen, F.M., Day, K.R., Salom, S.M. (Eds), Proceedings: Integrating Cultural Tactics into the Management of Bark Beetle and Reforestation Pests. USDA Forest Service General Technical Report NE–236Google Scholar
Ye, H., Li, L.S. 1994. The distribution of a Tomicus piniperda (L.) population in the crown of Yunnan pine during the shoot feeding period. Acta Entomologica Sinica 37: 311–6Google Scholar
Zolubus, P., Byers, J.A. 1995. Recapture of dispersing bark beetle, Ips typographus L. (Col., Scolytidae) in pheromone-baited traps: regression models. Journal of Applied Entomology 119: 285–9CrossRefGoogle Scholar