Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T05:07:46.730Z Has data issue: false hasContentIssue false

DIFFERENTIAL RESPONSE OF DOUGLAS-FIR TUSSOCK MOTH, ORGYIA PSEUDOTSUGATA (LEPIDOPTERA: LYMANTRIIDAE), POPULATIONS AND SIBLING GROUPS TO ACEPHATE AND CARBARYL: TOXICOLOGICAL AND GENETIC ANALYSES1

Published online by Cambridge University Press:  31 May 2012

M. W. Stock
Affiliation:
Department of Forest Resources, University of Idaho, Moscow, ID 83843
J. L. Robertson
Affiliation:
Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, Berkeley, CA 94701

Abstract

Unequal responses to acephate and carbaryl were found among four populations of Douglas-fir tussock moth, Orgyia pseudotsugata (McDunnough). Within a single population, response of almost half of sibling groups tested with either toxicant differed significantly from one another. Using electrophoresis, we related variation in sibling group responses to quantitative differences in esterase isozymes. Potential use of genetic assays in pre-spray population surveys is discussed.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beranek, A. P. 1974. Esterase variation and organophosphate resistance in populations of Aphis fabae and Myzus persicae. Entomologia exp. appl. 17: 129142.CrossRefGoogle Scholar
Burns, J. M. and Johnson, F. M.. 1967. Esterase polymorphism in natural populations of a sulfur butterfly, Colias eurytheme. Science 156: 9396.CrossRefGoogle ScholarPubMed
Bush, G. L. and Huettel, R. N.. 1972. Starch gel electrophoresis of tephritid proteins, a manual of techniques. Population Genetics Project, Phase I. International Biol. Progr. Working Group on Fruit Flies. 56 pp.Google Scholar
de Stordeur, E. 1976. Esterases in the mosquito Culex pipiens pipiens L.: formal genetics and polymorphism of adult esterases. Bioch. Genet. 14: 481493.CrossRefGoogle ScholarPubMed
Mason, R. R. and Luck, R. F.. 1978. Population growth and regulation. pp. 41–47 in Brookes, M., Stark, R., and Campbell, R. (Eds.), The Douglas-fir Tussock Moth: A Synthesis. Tech. Bull. U.S. Dep. Agric. 1585.Google Scholar
Matsumura, F. 1975. Toxicology of Insecticides. Plenum Press, New York. 503 pp.CrossRefGoogle Scholar
May, B. 1975. Electrophoretic variation in the genus Oncorhynchus: The methodology, genetic basis, and practical applications to fisheries research and management. Master's Thesis, Univ. of Washington, Seattle. 95 pp.Google Scholar
Overton, W. S. and Colbert, J. J.. 1978. Population modeling. pp. 53–56 in Brookes, M., Stark, R., and Campbell, R. (Eds.), The Douglas-fir Tussock Moth: A Synthesis. Tech. Bull. U.S. Dep. Agric. 1585.Google Scholar
Pasteur, N. and Sinègre, G.. 1975. Esterase polymorphism and sensitivity to Dursban organophosphorus insecticide in Culex pipiens pipiens populations. Bioch. Genet. 13: 789803.CrossRefGoogle ScholarPubMed
Ridgway, G. J., Sherburne, S. U., and Lewis, R. D.. 1970. Polymorphisms in the esterases of Atlantic herring. Trans. Am. Fish. Soc. 99: 147151.2.0.CO;2>CrossRefGoogle Scholar
Robertson, J. L. and Lyon, R. L.. 1973. Douglas-fir tussock moth: contact toxicity of 20 insecticides applied to the larvae. J. econ. Ent. 66: 12551257.CrossRefGoogle Scholar
Robertson, J. L., Boelter, L. M., Russell, R. M., and Savin, N. E.. 1978. Variation in response to insecticides by Douglas-fir tussock moth, Orgyia pseudotsugata (Lepidoptera: Lymantriidae), populations. Can. Ent. 110: 325328.CrossRefGoogle Scholar
Robertson, J. L., Gillette, N. L., Look, M., Lucas, B. A., and Lyon, R. L.. 1976. Toxicity of selected insecticides applied to western spruce budworm. J. econ. Ent. 69: 94104.CrossRefGoogle Scholar
Rogers, J. S. 1972. Measures of genetic similarity and genetic distance. Univ. Texas Publ. 7213, pp. 145153.Google Scholar
Russell, R. M., Robertson, J. L., and Savin, N. E.. 1977. POLO: a new computer program for probit analysis. Bull. ent. Soc. Am. 23: 209213.Google Scholar
Savin, N. E., Robertson, J. L., and Russell, R. M.. 1977. A critical evaluation of bioassay in insecticide research: likelihood ratio tests of dose-mortality regression. Bull. ent. Soc. Am. 23: 257266.Google Scholar
Snedecor, G. W. and Cochran, W. G.. 1967. Statistical methods. 6th ed. Iowa State Univ. Press, Ames. 593 pp.Google Scholar
Stock, M. W., Guenther, J. D., and Pitman, G. B.. 1978. Implications of genetic differences between mountain pine beetle populations to integrated pest management. pp. 197201 in Proc., Mountain Pine Beetle Management in Lodgepole Pine Forests, Pullman, Washington, April 25–27, 1978.Google Scholar
Stoszek, K. F. and Mika, P. G.. 1978. Outbreaks, sites, and stands. pp. 5659in Brookes, M., Stark, R., and Campbell, R. (Eds.), The Douglas-Fir Tussock Moth: A Synthesis. Tech. Bull. U.S. Dep. Agric. 1585.Google Scholar
Strickberger, M. W. 1976. Genetics. Macmillan, New York. 914 pp.Google Scholar
Sudderuddin, K. I. 1973. An electrophoretic study of some hydrolases from an OP-susceptible and an OP-resistant strain of the green peach aphid, Myzus persicae (Sulz.). Comp. Bioch. Physiol. 44B: 923929.Google Scholar
Torgerson, T. R. and Dahlsten, D. L.. 1978. Natural mortality. pp. 4753in Brookes, M., Stark, R., and Campbell, R. (Eds.), The Douglas-fir Tussock Moth: A Synthesis. Tech. Bull. U.S. Dep. Agric. 1585.Google Scholar
Tsakas, S. and Krimbas, C. B.. 1970. The genetics of Dacus oleae. IV. Relation between adult esterase genotypes and survival to organophosphate insecticides. Evolution 24: 807815.CrossRefGoogle ScholarPubMed
Wellington, W. G. 1977. Returning the insect to insect ecology: some consequences for pest management. Environ. Ent. 6: 18.CrossRefGoogle Scholar