Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T15:37:41.876Z Has data issue: false hasContentIssue false

DEVELOPMENTAL TIMES AND FECUNDITY OF IXODES COOKEI PACKARD (ACARI: IXODIDAE) UNDER LABORATORY CONDITIONS

Published online by Cambridge University Press:  31 May 2012

Martha J. Farkas
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Gordon A. Surgeoner
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

Ixodes cookei Packard required ca. 14 weeks to complete development under laboratory conditions, using groundhogs [Marmota monax (L.)] as the blood meal source and off-host conditions of 25–29°C and 93–100% relative humidity. All three post-embryonic instars engorged in ca. 6–8 days. Larvae and nymphs maintained at 25°C moulted to the next instar ca. 18–20 days after detachment. Moult occurred under conditions of either a 0L:24D or a 16L:8D photoperiod. Adult females increased in weight ca. 49-fold from the unfed to the engorged state, attaining a weight of 194.1 ± 15.0 (mean ± SE) mg and producing 1281.5 ± 139.1 (mean ± SE) eggs at 29°C. The pre-ovipositional and ovipositional periods were 4.7 ± 0.3 and 20.2 ± 1.7(mean ± SE) days, respectively, at 29°C. Fifty percent of eggs were deposited within the 1st week of the ovipositional period at 29°C. First egg hatch at 29°C occurred ca. 31 days after oviposition was started. Eggs maintained at 10°C did not hatch, and the thermal threshold for egg development was calculated to be 11.2°C.

Résumé

Ixodes cookei Packard a prix à peu près 14 semaines pour compléter le développement sous les conditions du laboratoire, quand les marmottes [Marmota monax (L.)] ont servi comme source de repas sanguins et quand les conditions hors hôte ont été de 25–29°C et de 93–100% humidité relative. Tous les trois stades post-embryonnaires se sont engorgés dans à peu près 6–8 jours. Les larves et les nymphes maintenues à 25°C ont mué au stade subséquent à peu près de 18–20 jours après avoir été enlevées. Les mues ont eu lieu sous les conditions d’une photopériode soit de 0L : 24N, soit de 16L : 8N. Les adultes du sexe féminin ont augmenté de poids ca. 49 fois à partir du stade non-nourri au stade engorgé, pour atteindre un poids de 194,1 ± 15,0 mg (moyenne ± ET) et pour produire 1281,5 ± 139,1 oeufs (moyenne ± ET) à 29°C. Les périodes de préponte et de ponte ont été 4,7 ± 0,3 et 20,2 ± 1,7 jours (moyenne ± ET), respectivement, à 29°C. Cinquante pourcent des oeufs ont été déposés en dedans de la première semaine de la période de ponte à 29°C. La première éclosion d’oeufs à 29°C a eu lieu à peu près 31 jours suivant le commencement de ta ponte. Les oeufs maintenus à 10°C n’ont pas éclos et le palier thermal pour le développement d’oeufs a été calculé comme 11,2°C.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artsob, H. 1989. Powassan encephalitis. pp. 2949in Monath, T.P. (Ed.), The Arboviruses: Epidemiology and Ecology. Volume IV. CRC Press, Inc., Boca Raton, FL.Google Scholar
Artsob, H., Spence, L., Surgeoner, G., McCreadie, J., Thorsen, J., Th'ng, C., and Lampotang, V.. 1984. Isolation of Francisella tularensis and Powassan virus from ticks (Acari: Ixodidae) in Ontario, Canada. J. Med. Ent. 21: 165168.CrossRefGoogle ScholarPubMed
Arthur, D.R., and Snow, K.. 1966. The significance of size in the immature stages of the Ixodoidea. Parasitology 56: 391397.Google Scholar
Balashov, Y.S. 1972. A translation of Bloodsucking Ticks (Ixodoidea) — Vectors of Diseases of Man and Animals. Misc. Publ. ent. Soc. Am. 8: 161376.Google Scholar
Belozerov, V.N. 1982. Diapause and biological rhythms in ticks. pp. 469500in Obenchain, F.D., and Galun, R. (Eds.), Physiology of Ticks. Pergamon Press, New York, NY.Google Scholar
Bishopp, F.C., and Trembley, H.L.. 1945. Distribution and hosts of certain North American ticks. J. Parasitol. 1: 154.Google Scholar
Campbell, A., and Harris, D.L.. 1979. Reproduction of the American dog tick, Dermacentor variabilis, under laboratory and field conditions. Environ. Ent. 8: 734739.Google Scholar
Canadian Council on Animal Care. 1980. Guide to the care and use of experimental animals. Vol. 1. Canadian Council on Animal Care, Ottawa, Ont.Google Scholar
Clifford, C.M., Anastos, G., and Elbl, A.. 1961. The larval ixodid ticks of the Eastern United States (Acarina–Ixodidae). Misc. Publ. ent. Soc. Am. 2: 213237.Google Scholar
Cooley, R.A., and Kohls, G.M.. 1945. The genus Ixodes in North America. Natn. Inst. Hlth. Bull. 184. 246 pp.Google Scholar
Cooney, J.C., and Hays, K.L.. 1972. Bionomics of the gopher tortoise tick, Amblyomma tuberculatum Marx. J. Med. Ent. 9: 239245.Google Scholar
Davis, D.E. 1967. The role of environmental factors in hibernation of woodchucks (Marmota monax). Ecology 48: 683689.CrossRefGoogle Scholar
Deibel, R., Flanagan, T.D., and Smith, V.. 1975. Central nervous system infections in New York State. N.Y. State J. Med. 75: 23372342.Google Scholar
Deibel, R., Srihongse, S., and Woodall, J.P.. 1979. Arboviruses in New York State. An attempt to determine the role of arboviruses in patients with viral encephalitis and meningitis. Am. J. Trop. Med. Hyg. 28: 577582.Google Scholar
DenHollander, N., and Allen, J.R.. 1985. Dermacentor variabilis: acquired resistance to ticks in BALB/c mice. Exp. Parasitol. 59: 118129.CrossRefGoogle ScholarPubMed
Diehl, P.A., Aeschlimann, A., and Obenchain, F.D.. 1982. Tick reproduction: oogenesis and oviposition. pp. 277350in Obenchain, F.D., and Galun, R. (Eds.), Physiology of Ticks. Pergamon Press, New York, NY.CrossRefGoogle Scholar
Gladney, W.J., and Dawkins, C.C.. 1971. Parthenogenetic reproduction by Dermacentor variabilis (Acarina: Ixodidae). Ann. ent. Soc. Am. 64: 12861289.Google Scholar
Gladney, W.J., Dawkins, C.C., and Price, M.A.. 1977. Amblyomma inornatum (Acarina: Ixodidae): natural hosts and laboratory biology. J. Med. Ent. 14: 8588.Google Scholar
Goldfield, M., Austin, S.M., Black, H.C., Taylor, B.F., and Altman, R.. 1973. A non-fatal human case of Powassan virus encephalitis. Am. J. Trop. Med. Hyg. 22: 7881.Google Scholar
Gregson, J.D. 1956. The Ixodoidea of Canada. Can. Dept. Agric. Publ. 930. 92 pp.Google Scholar
Guglielmone, A.A., and Moorhouse, D.E.. 1985. Differences in nymphs of Amblyomma triguttatum triguttatum Koch moulting to males or females. Acarologia 26: 711.Google Scholar
Hamdy, B.H. 1973. Biochemical and physiological studies of certain ticks (Ixodoidea). Cycle of nitrogenous excretion of Hyalomma dromedarii Koch (Ixodidae). J. Med. Ent. 10: 345348.Google Scholar
Knight, M.M., Norval, R.A.I., and Rechav, Y.. 1978. The life cycle of the tick Hyalomma marginatum rufipes Koch (Acarina: Ixodidae) under laboratory conditions. J. Parasitol. 64: 143146.Google Scholar
Ko, R.C. 1971. The transmission of Ackertia marmotae Webster, 1967 of groundhogs (Marmota monax) by Ixodes cookei. Ph.D. thesis, University of Guelph, Guelph, Ont.140 pp.Google Scholar
Ko, R.C. 1972. Biology of Ixodes cookei Packard (Ixodidae) of groundhogs (Marmota monax Erxleben). Can. J. Zool. 50: 433436.Google Scholar
Ko, R.C. 1973. The larva of Ixodes cookei (Acarina: Ixodidae). Can. Ent. 105: 245248.CrossRefGoogle Scholar
Koch, H.G. 1981. Suitability of birds and mammals as hosts for immature stages of the lone star tick, Amblyomma americanum (Acari: Ixodidae). J. Med. Ent. 18: 9398.Google Scholar
McLean, D.M., Best, J.M., Mahalingam, S., Chernesky, M.A., and Wilson, W.E.. 1964. Powassan virus: summer infection cycle, 1964. Can. Med. Assoc. J. 91: 13601362.Google Scholar
McLean, D.M., Cobb, C., Gooderham, S.E., Smart, C.A., Wilson, A.G., and Wilson, W.E.. 1967. Powassan virus: persistence of virus activity during 1966. Can. Med. Assoc. J. 96: 660664.Google Scholar
McLean, D.M., and Donohue, W.L.. 1959. Powassan virus: isolation of virus from a fatal case of encephalitis. Can. Med. Assoc. J. 80: 708711.Google ScholarPubMed
McLean, D.M., Smith, P.A., Livingstone, S.E., Wilson, W.E., and Wilson, A.G.. 1966. Powassan virus: vernal spread during 1965. Can. Med. Assoc. J. 94: 532536.Google Scholar
Oliver, J.H. Jr., 1974. Symposium on reproduction of arthropods of medical and veterinary importance. IV. Reproduction in ticks (Ixodoidea). J. Med. Ent. 11: 2634.CrossRefGoogle ScholarPubMed
Rossier, E., Harrison, R.J., and Lemieux, B.. 1974. A case of Powassan virus encephalitis. Can. Med. Assoc. J. 110: 11731175.Google Scholar
SAS Institute Inc. 1987. SAS/STAT guide for personal computers. Version 6 Edition. SAS Institute Inc., Cary, NC. 1028 pp.Google Scholar
Smith, R., Woodall, J.P., Whitney, E., Deibel, R., Gross, M.A., Smith, V., and Bast, T.F.. 1974. Powassan virus infection. A report of three human cases of encephalitis. Am. J. Dis. Child. 127: 691693.CrossRefGoogle ScholarPubMed
Snow, K.R., and Arthur, D.R.. 1966. Oviposition in Hyalomma anatolicum anatolicum (Koch, 1844) (Ixodoidea: Ixodidae). Parasitology 56: 555567.Google Scholar
Sonenshine, D.E., and Tigner, J.A.. 1969. Oviposition and hatching in two species of ticks in relation to moisture deficit. Ann. ent. Soc. Am. 62: 628640.CrossRefGoogle ScholarPubMed
Sweatman, G.K. 1967. Physical and biological factors affecting the longevity and oviposition of engorged Rhipicephalus sanguineus female ticks. J. Parasitol. 53: 432445.Google Scholar
Sweatman, G.K. 1968. Temperature and humidity effects on the oviposition of Hyalomma aegyptium ticks of different engorgement weights. J. Med. Ent. 5: 429439.CrossRefGoogle ScholarPubMed
Wang, L.C.H. 1978. Energetic and field aspects of mammalian torpor: the Richardson's ground squirrel. pp. 109145in Wang, L.C.H., and Hudson, J.W. (Eds.), Strategies in Cold: Natural Torpidity and Thermogenesis. Academic Press, New York, NY.Google Scholar
Winston, P.W., and Bates, D.H.. 1960. Saturated solutions for the control of humidity in biological research. Ecology 41: 232237.CrossRefGoogle Scholar