Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-04T19:55:05.307Z Has data issue: false hasContentIssue false

DEVELOPMENTAL TIME AND HOST SELECTION BY THE APHID PARASITOID APHELINUS SP. NR. VARIPES (FOERSTER) (HYMENOPTERA: APHELINIDAE)

Published online by Cambridge University Press:  31 May 2012

S.E. Lajeunesse
Affiliation:
Entomology Research Laboratory, Montana State University, Bozeman, Montana, USA59717
G.D. Johnson
Affiliation:
Entomology Research Laboratory, Montana State University, Bozeman, Montana, USA59717

Abstract

Developmental rates, lower developmental threshold, host selection among three species of aphid, and head capsule width were determined for the parasitoid Aphelinus sp. nr. varipes (Foerster) (Hymenoptera: Aphelinidae). Aphid species used were Russian wheat aphid, Diuraphis noxia (Mordvilko), western wheat aphid, Diuraphis tritici (Gillette), and corn leaf aphid, Rhopalosiphum maidis Fitch. Developmental rate was determined at five constant temperatures, 11.3, 14.7, 19.0, 25.7, and 30.3°C. Developmental times of the wasp were similar in Russian and western wheal aphids, ranging from 88.7 days al 11,3°C to 11.3 days at 30.3°C. Lower developmental threshold was similar in both species, 9.7°C in Russian wheat aphid and 9.4°C in western wheat aphid. Because of the low number of corn leaf aphid s parasitized, it was not possible to compute a parasitoid development threshold in that host. In the host selection test, there were no significant differences in numbers of Russian and western wheat aphids attacked; corn leaf aphid was seldom attacked. The western wheat aphid is a native species that also causes leaf-rolling; we believe it was the primary host of the parasitoid before the arrival of the Russian wheat aphid. Wasps emerging from Russian wheat aphid were consistently larger than those emerging from western wheat aphid. Mean head capsule width for 30 female wasps from Russian wheat aphid was 0.33 mm; from 30 female wasps from western wheat aphid mean head capsule width was 0.20 mm.

Résumé

La vitesse du développement, le seuil inférieur de température du développement, la sélection d’un hôte parmi trois espèces de pucerons et la largeur de la capsule céphalique ont été déterminés chez le parasitoïde Aphelinus sp. près de varipes (Foerster) (Hymenoptera : Aphelinidae). Les pucerons utilisés étaient Diuraphis noxia (Mordvilko), Diuraphis tritici (Gillette) et le Puceron du maïs, Rhopalosiphum maidis Fitch. La vitesse de développement a été déterminée à cinq températures constantes, 11,3, 14,7, 19,0, 25,7 et 30,3°C. La durée du développement des parasites était la même chez les deux espèces de Diuraphis et s’échelonnait entre 88,7 jours à 11,3°C et 11,3 jours à 30,3°C. Le seuil inférieur de température du développement était semblable chez les deux espèces, soit 9,7°C chez D. noxia et 9,4°C chez D. tritici. Le nombre de Pucerons du maïs parasités était trop faible pour qu’il soit possible de calculer un seuil chez cet hôte. Au cours du lest sur la sélection d’un hôte, il n’y avait pas de différence significative entre le nombre de D. noxia et le nombre de D. iritici choisis; le Puceron du maïs était rarement attaqué. Diuraphis tritici est une espèce indigène qui est aussi rouleuse de feuilles; nous croyons qu’il s’agissait du principal hôte du parasitoïde avant l’arrivée de Diuraphis noxia. Les guêpes issues de D. noxia étaient toujours plus grosses que les guêpes émergées de D. tritici. La largeur moyenne de la capsule céphalique de 30 guêpes femelles émergées de D. noxia était de 0,33 mm, alors que la largeur moyenne de cette variable chez 30 guêpes femelles issues de D. tritici n’était que de 0,20 mm.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalbersberg, Y.K., Van der Westhuizen, M.C., and Hewitt, P.H.. 1989. Characteristics of the population buildup of the Russian wheat aphid Diuraphis noxia and the effect on wheat yield in the eastern Orange Free State. Ann. appl. Biol. 114: 231242.CrossRefGoogle Scholar
Altieri, M.A., and Liebman, M. (Eds.). 1988. Weed Management in Agroecosystems: Ecological Approaches. CRC Press, Boca Raton, FL. 354 pp.Google Scholar
Altieri, M.A., Martin, P.B., and Lewis, W.J.. 1983. A quest for ecologically based pest management systems. Environ. Manage. 7: 91101.CrossRefGoogle Scholar
Anonymous. 1989. Economic Impact of the Russian Wheat Aphid in the Western United States: 1987–1988. Report of the Russian Wheat Aphid Investigating Committee of the Crops and Soils Committee of the Great Plains Agricultural Council. 12 pp.Google Scholar
Anonymous. 1990. Economic Impact of the Russian Wheat Aphid in the Western United States: 1988–1989. Report of the Russian Wheat Aphid Investigating Committee of the Crops and Soils Committee of the Great Plains Agricultural Council. 10 pp.Google Scholar
Archer, T.L., Cate, R.H., Eikenbary, R.D., and Starks, K.J.. 1974. Parasitoids collected from greenbugs and corn leaf aphids in Oklahoma in 1972. Ann. ent. Soc. Am. 67(1): 1114.CrossRefGoogle Scholar
Blackman, R.L., and Eastop, V.F.. 1984. Aphids on the World's Crops: An Identification and Information Guide. John Wiley and Sons, New York, NY. pp. 262263.Google Scholar
Caltagirone, L. 1985. Identifying and discriminating among biotypes of parasites and predators. pp. 189–200 in Hoy, M., and Herzog, D. (Eds.), Biological Control in Agricultural IPM Systems. Academic Press, San Diego, CA. 589 pp.Google Scholar
Campbell, A., Frazier, B.D., Gilbert, N., Gutierrez, A.P., and Mackauer, M.. 1974. Temperature requirements of some aphids and their parasites. J. appl. Ecol. 11: 431438.CrossRefGoogle Scholar
Charnov, E.L., and Skinner, S.W.. 1984. Evolution of host selection and clutch size in parasitoid wasps. Florida Ent. 67(1): 521.CrossRefGoogle Scholar
Clements, S.L., Johnson, R.C., and Pike, K.S.. 1990. Field populations of the Russian wheat aphid (Homoptera: Aphididae) and other cereal aphids on cool-season perennial grass accessions. J. econ. Ent. 83(3): 846849.CrossRefGoogle Scholar
Cohen, M.B., and Mackauer, M.. 1987. Intrinsic rate of increase and temperature coefficients of the aphid parasite Ephedrus californicus Baker (Hymenoptera: Aphidiidae). Can. Ent. 119: 231237.CrossRefGoogle Scholar
Draper, N., and Smith, H.. 1981. p. 47 in Applied Regression Analysis. John Wiley and Sons, New York, NY. 523 pp.Google Scholar
Du Toit, F., and Walters, M.C.. 1984. Damage assessment and economic threshold values for the chemical control of the Russian wheat aphid, Diuraphis noxia (Mordvilko) on winter wheat. pp. 58–62 in Walters, M.C. (Ed.), Progress in Russian Wheat Aphid Diuraphis noxia (Mordv.) Research in the Republic of South Africa. Dept. Agric. Repub. S. Afr. Tech. Commun. 191: 78 pp.Google Scholar
Force, D.C., and Messenger, P.S.. 1968. The use of laboratory studies of three hymenopterous parasites to evaluate their field potential. J. econ. Ent. 61(5): 13741378.CrossRefGoogle Scholar
Gilstrap, F.E., and McKinnon, L.K.. 1988. Response of native parasites to Russian wheat aphid. Texas A&M Univ. Agric. Exp. Stn. PR-4558, June. 5 pp.Google Scholar
Gonzales, D. 1988. Biotypes in biological control—examples with populations of Aphidius ervi, Trichogramma pretiosum and Anagrus epos (parasitic Hymenoptera). pp. 475–482 in Gupta, V.K. (Ed.), Advances in Parasitic Hymenoptera Research. E.J. Brill, New York, NY. 546 pp.Google Scholar
Halbert, S.E., Mowry, T.M., and Pike, K.S.. 1990. Are perennial conservation grasses reservoirs for Russian wheat aphid during fall planting season? Proceedings of the Fourth Russian Wheat Aphid Workshop, compiled by Johnson, G.D.. Montana State University, Bozeman, Montana. Oct. 10–12, 1990. 189 pp.Google Scholar
Hartley, E.A. 1922. Some bionomics of Aphelinus semiflavus Howard, chalcid parasite of aphids. Ohio J. Sci. 22(8): 209238.Google Scholar
Hewitt, P.H., van Niekerk, G.J.J., Walters, M.C., Kriel, C.R., and Fouche, A.. 1984. Aspects of the ecology of the Russian wheat aphid, Diuraphis noxia in the Bloemfontein District. I. The colonization and infestation of sown wheat, identification of summer hosts and cause of infestation symptoms. pp. 3–13 in Walters, M.C. (Ed.), Progress in Russian Wheat Aphid Diuraphis noxia (Mordv.) Research in the Republic of South Africa. Dept. Agric. Repub. S. Afr. Tech. Commun. 191: 78 pp.Google Scholar
Hokkanen, H.M.T., and Pimentel, D.. 1984. New approach for selecting biological control agents. Can. Ent. 116: 11091121.CrossRefGoogle Scholar
Hokkanen, H.M.T., and Pimentel, D.. 1989. New associations in biological control: Theory and practice. Can. Ent. 121(10): 829840.CrossRefGoogle Scholar
Howard, L.O. 1908. Upon the aphis-feeding species of Aphelinus. Ent. News. 19(8): 365367.Google Scholar
Jackson, H.B., Coles, L.W., Wood, E.A. Jr, and Eikenbary, R.D.. 1970. Parasites reared from the greenbug and corn leaf aphid in Oklahoma in 1968 and 1969. J. econ. Ent. 63(3): 733736.CrossRefGoogle Scholar
Johnson, G.D. 1989. The Russian wheat aphid: Identification, biology and management. Montana State University Extension Service Bull. 49: 8 pp.Google Scholar
Johnson, G.D., Kammerzell, K., and Hudson, S.. 1988. Effectiveness of foliar-applied insecticides to control Russian wheat aphid in small grains. Montana AgRes. 5: 28.Google Scholar
Kieckhefer, R.W., and Elliott, N.C.. 1989. Effects of fluctuating temperatures on development of immature Russian wheat aphids (Homoptera: Aphididae) and demographic statistics. J. econ. Ent. 82(1): 119122.CrossRefGoogle Scholar
Kindler, D., and Springer, T.. 1989. Alternate hosts of Russian wheat aphid (Homoptera: Aphididae). J. econ. Ent. 82(5): 13581362.CrossRefGoogle Scholar
Kriel, C.F., Hewitt, P.H., de Jager, J., Walters, M.C., Fouche, A., and van der Westhuizen, M.C.. 1984. Aspects of the ecology of the Russian wheat aphid, Diuraphis noxia in the Bloemfontein district. II. Population dynamics. pp. 14–21 in Walters, M.C. (Ed.), Progress in Russian Wheat Aphid Diuraphis noxia (Mordv.) Research in the Republic of South Africa. Dept. Agric. Repub. S. Afr. Tech. Commun. 191: 78 pp.Google Scholar
Lajeunesse, S.E., and Johnson, G.D.. 1991. New North American host records for Aphelinus sp. nr. varipes (Foerster) (Hymenoptera: Aphelinidae): The western wheat aphid, Diuraphis tritici (Gillette), and the Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae). Can. Ent. 123: 413415.CrossRefGoogle Scholar
Langston, D.T. 1970. Laboratory studies of the aphid parasite, Aphelinus nigritus (Howard) (Hymenoptera: Aphelinidae). Thesis, Department of Entomology, Oklahoma State University, Stillwater, OK.Google Scholar
Messenger, P.S. 1964. Use of life tables in a bioclimatic study of an experimental aphid–braconid wasp host–parasite system. Ecology 45(1): 119131.CrossRefGoogle Scholar
Messenger, P.S., and Force, D.C.. 1963. An experimental host–parasite system: Therioaphis maculata (Buckton) – Praon palitans Muesbeck (Homoptera: Aphididae – Hymenoptera: Braconidae). Ecology 44(3): 532540.CrossRefGoogle Scholar
Michels, G.J. Jr, and Behle, R.W.. 1989. Influence of temperature on reproduction, development and intrinsic rate of increase of Russian wheat aphid, greenbug, and bird cherry-oat aphid (Homoptera: Aphididae). J. econ. Ent. 82(2): 439444.CrossRefGoogle Scholar
O'Neill, K.M., and Skinner, S.W.. 1990. Ovarian egg size and number in relation to female size in five species of parasitoid wasps. J. Zool., Lond. 220: 115122.CrossRefGoogle Scholar
Parker, J.R. 1916. The western wheat aphis Brachycolus tritici (Gill.). J. econ. Ent. 9: 182187.CrossRefGoogle Scholar
Raney, H.G., Coles, L.W., Eikenbary, R.D., Morrison, R.D., and Starks, K.J.. 1971. Host preference, longevity, developmental period and sex ratio of Aphelinus asychis with three sorghum-fed species of aphids held at controlled temperatures. Ann. ent. Soc. Am. 64(1): 169176.CrossRefGoogle Scholar
Rogers, C.E., Jackson, H.B., Eikenbary, R.D., and Starks, K.J.. 1972. Host–parasitoid interaction of Aphis helianthi on sunflowers with introduced Aphelinus asychis, Ephedrus plagiator and Praon gallicum, and native Aphelinus nigritus and Lysiphlebus testiceipes. Ann. ent. Soc. Am. 65(1): 3841.CrossRefGoogle Scholar
SAS Institute Inc. 1990. SAS for Personal Computers, Version 6.06. SAS Institute Inc., Cary, NC.Google Scholar
Sewell, W.D., and Caldwell, R.M.. 1960. Use of benzimidazole and excised wheat seedling leaves in testing resistance to Septoria tritici. Phytopathology 50: 654.Google Scholar
Singh, P., and Moore, R.F. (Eds.). 1985. Handbook of Insect Rearing. Vol. 1. Elsevier Scientific Press, New York, NY. 483 pp.Google Scholar
Starks, K.J., and Burton, R.L.. 1977. Greenbugs: Determining biotypes, culturing and screening for plant resistance, with notes on rearing parasitoids. USDA-ARS Tech. Bull. 1556: 12 pp. Washington, DC.Google Scholar
Stoetzel, M.B. 1987. Information on and identification of Diuraphis noxia (Homoptera: Aphididae) and other aphid species colonizing leaves of wheat and barley in the United States. J. econ. Ent. 80(3): 696704.CrossRefGoogle Scholar
Thomas, J.B., and Butts, R.A.. 1990. Effect of Russian wheat aphid on cold hardiness and winterkill on overwintering winter wheat. Can. J. Plant Sci. 70(4): 10331041.CrossRefGoogle Scholar
Walters, M.C., Penn, F., du Toit, F., Botha, T.C., Aalbersberg, K., Hewitt, P.H., and Broodryk, S.W.. 1980. The Russian wheat aphid. Farming S. Afr. Leafl. Series, Wheat G. 3, pp. 16.Google Scholar
Webster, F.M., and Phillips, W.J.. 1912. The spring grain-aphis or “green bug”. USDA Bureau Ent. Bull. 110: 147 pp.Google Scholar
Webster, J.A., Starks, K.J., and Burton, R.L.. 1987. Plant resistance studies with Diuraphis noxia (Homoptera: Aphididae), a new United States wheat pest. J. econ. Ent. 80(4): 944949.CrossRefGoogle Scholar
Wharton, R.A. 1983. The status of Aphelinus varipes (Foerster) and Aphelinus nigritus Howard (Hymenoptera: Aphelinidae). Proc. ent. Soc. Wash. 85(3): 624626.Google Scholar
Wood, E.A. Jr, 1958. A hymenopterous parasite new to Oklahoma. J. econ. Ent. 51(4): 553.CrossRefGoogle Scholar