Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T12:46:51.988Z Has data issue: false hasContentIssue false

DEVELOPMENT OF RESISTANCE TO PERMETHRIN AND DICHLORVOS BY THE HOUSE FLY (DIPTERA: MUSCIDAE) FOLLOWING CONTINUOUS AND ALTERNATING INSECTICIDE USE ON FOUR FARMS

Published online by Cambridge University Press:  31 May 2012

R. S. MacDonald
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario NlG 2W1
G. A. Surgeoner
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario NlG 2W1
K. R. Solomon
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario NlG 2W1
C. R. Harris
Affiliation:
Research Centre, Agriculture Canada, London, Ontario N6A 5B7

Abstract

The rate at which adult house flies, Musca domestica L. developed resistance to permethrin and dichlorvos, in response to two spray regimes, was studied on eight farms near Guelph, Ontario during 1980 and on four of these farms during 1981. These regimes were: continuous reliance on permethrin or permethrin alternated with dichlorvos throughout the spray season. Where sanitation was comparable, resistance to permethrin developed more rapidly in fly populations from the farms on the continuous permethrin regime than on the farm in which permethrin and dichlorvos had been alternated. Resistance to dichlorvos did not decline under the continuous regime while in the alternately selected flies resistance ratios dropped from 11 to 6 after 2 years. Frequent sanitation delayed the development of resistance in a population continuously selected with permethrin. Alternation of dissimilar insecticides appeared to be a viable means of delaying resistance in the field.

Résumé

La vitesse à laquelle la résistance des adultes de la mouche domestique Musca domestica L. à la perméthrine et au dichlorvos, se développe en réponse à 2 régimes de traitement, a été étudiée sur huit fermes situées près de Guelph en Ontario en 1980, et sur quatre d'entre elles en 1981. Ces régimes consistaient en l'utilisation continuelle de la perméthrine ou une alternance de la perméthrine avec le dichlorvos durant la saison. Lorsque les mesures de salubrité étaient comparables, la résistance à la perméthrine s'est développée plus rapidement chez les populations de mouches des fermes où la perméthrine était utilisée continuellement, que chez celles où la perméthrine et le dichlorvos étaient utilisés en alternance. La résistance au dichlorvos n'a pas diminué sous le régime continu, alors que chez les mouches soumises à des pressions alternées de sélection, les indices de résistance ont baissé de 11 à 6 en 2 ans. L'application fréquente de mesures sanitaires a retardé le développement de la résistance chez une population sélectionnée continuellement avec la perméthrine. L'alternance entre des insecticides de type différent est apparue comme une façon réaliste de retarder la résistance sur le terrain.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous. 1976. Control of insects affecting livestock. Agric. Res. Serv. natn. Res. Prog. NRP 20480. 99 pp.Google Scholar
Brown, T. M. 1981. Countermeasures for insecticide resistance. Bull. ent. Soc. Am. 27: 198201.Google Scholar
Finney, D. J. 1971. Probit Analysis, 3rd ed. Cambridge University Press, Cambridge, England. 322 pp.Google Scholar
Georghiou, G. P. 1980. Insecticide resistance and prospects for its management. Res. Rev. 76: 131145.CrossRefGoogle Scholar
Harris, C. R., Turnbull, S. A., Whistlecraft, J. W., and Surgeoner, G. A.. 1982. Multiple resistance shown by a field strain of the house fly, Musca domestica (Diptera: Muscidae), to organochlorine, organophosphorous, carbamate and pyrethroid insecticides. Can. Ent. 114: 447454.CrossRefGoogle Scholar
Hoskins, W. M. and Gordon, H. T.. 1956. Arthropod resistance to chemicals. A. Rev. Ent. 1: 89122.CrossRefGoogle Scholar
Keiding, J. 1977. Resistance in the house fly in Denmark and elsewhere. pp. 261–302 in Watson, D. L. and Brown, A. W. A. (Eds.), Pesticide Management and Insecticide Resistance. Academic Press, N.Y.638 pp.Google Scholar
MacDonald, R. S., Surgeoner, G. A., Solomon, K. R., and Harris, C. R.. 1983. Laboratory studies on the effect of four spray regimes on the development of resistance to permethrin and dichlorvos in the house fly. J. econ. Ent. 76: 417422.CrossRefGoogle Scholar
Nolan, J., Roulston, W. J., and Wharton, R. H.. 1977. Resistance to synthetic pyrethroids in a DDT-resistant strain of Boophilus microplus. Pestic. Sci. 8: 484486.CrossRefGoogle Scholar
Prasittisuk, C. and Busvine, J. R.. 1977. DDT-resistant mosquito strains with cross resistance to pyrethroids. Prestic. Sci. 8: 527533.CrossRefGoogle Scholar
Rogoff, W. M. 1978. Insects of medical importance. pp. 701–724 in Pfadt, R. E. (Ed), Fundamentals of Applied Entomology. Macmillan, N.Y.798 pp.Google Scholar
Sawicki, R. M. 1975. Effects of sequential resistance on pesticide management. Proc. 8th Br. Insectic. Fungic. Conf. 3: 799812.Google Scholar
Scott, J. G. and Matsumura, F.. 1981. Characteristics of a DDT-induced case of cross resistance to permethrin in Blattella germanica. Pestic. Biochem. Physiol. 16: 2127.CrossRefGoogle Scholar