Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T04:34:07.507Z Has data issue: false hasContentIssue false

DEVELOPMENT OF NUCLEAR POLYHEDROSIS VIRUS FOR CONTROL OF GYPSY MOTH (LEPIDOPTERA: LYMANTRIIDAE) IN ONTARIO. I. AERIAL SPRAY TRIALS IN 1988

Published online by Cambridge University Press:  31 May 2012

J.C. Cunningham
Affiliation:
Forestry Canada, Forest Pest Management Institute, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
W.J. Kaupp
Affiliation:
Forestry Canada, Forest Pest Management Institute, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
G.M. Howse
Affiliation:
Forestry Canada — Ontario Region, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7

Abstract

A double application of Disparvirus, a nuclear polyhidrosis virus, at 1.25 × 1012 polyhedral inclusion bodies (PIB) per hectare, giving a total of 2.5 × 1012 PIB per hectare, was applied aerially on three plots in an emitted volume of 10.0 L per hectare. The two applications were 3 days apart and most larvae were in the first instar. Three plots were selected as untreated checks; each was paired with a treated plot on the basis of pre-spray gypsy moth egg-mass numbers and locality. The pre-spray egg-mass counts ranged from 1430 to 8520 per hectare in the six plots. Assessment of the treatment was based on numbers of pupae and fall egg masses as well as on estimates of defoliation and on microscopic examination of larvae collected at weekly intervals to determine the incidence of virus infection. Between 12 and 19 days post-spray, 49, 61, and 85% of the larvae were infected with virus in the three treated plots compared with 3, 7, and 14%, respectively, of larvae in the check plots. Red oak was 14% defoliated in two of the treated plots compared with 82 and 90% in their corresponding check plots. The third plot suffered 46% defoliation due to leaf-eating caterpillars other than gypsy moth; defoliation in its corresponding check plot was 31%. Reductions in egg-mass numbers in the treated plots were 76, 93, and 98% compared with an increase of 56% and decreases of 50 and 70%, respectively, in corresponding check plots. Corrected population reductions (Abbott’s formula) were 84, 85, and 92% in the three treated plots.

Résumé

Un arrosage par deux fois de Disparvirus, un virus polyédrique nucléaire, à une concentration de 1,25 × 1012 de corps d’inclusions de polyédrique (CIP) par hectare, donnant une concentration globale de 2,5 × 1012 CIP par hectare, a été appliqué à trois parcelles d’essai à raison d’un volume émis de 10,0 L par hectare. Les deux applications ont été séparées de 3 jours et la plupart des iarves étaient en premier stade. Trois autres parcelles expérimentales ont été sélectionnées comme parcelles-témoins non-traitées; chacune a été jumelée avec une parcelle traitée basée sur te nombre de masses d’oeufs de îa spongieuse avant l’arrosage et sur le site le nombre de masses d’oeufs de la spongieuse avant l’arrosage a varié entre 1430 et 8520 par hectare aux six parcelles. L’évaluation du traitement a été basée aux nombres de pupes et de masses d’oeufs automnales, aussi bien à l’estimation de défoliation et à l’amen microscopique examen de larvae ramassées hebdomadairement pour décider l’incidence de l’infection virale. Entre 12 à 19 jours suivant l’arrosage, 49, 61 et 85% des larvaes ont été infectées avec le virus dans les trois parcelles traitées à comparer à 3, 7 et 14%, respectivement, des larvae aux parcelles-témoins. La chêne rouge a été défeuillée de 14% à deux des parcelles traitées a comparer à 82 et à 90% dans leurs parcelles-témoins. La troisième parcelle a souffert de la défoliation du niveau de 46% à cause des chenilles autres que la spongieuse; la défoliation à sa parcelle-témoin correspondante a été de 31%. La diminution en nombres de masses d’oeufs aux parcelles traitées ont été de 76, 93 et 98% à comparer à une augmentation de 56% et des diminutions de 50 et de 70%, respectivement, aux parcelles-témoins. Les diminutions corrigées (formule d’Abbott) ont été 84, 85 et 92% aux trois parcelles traitées.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method for computing the effectiveness of an insecticide. J. econ. Ent. 18: 265267.Google Scholar
Cunningham, J.C. 1982. Field trials with baculoviruses: Control of forest insect pests. pp. 335386in Kurstak, E. (Ed.), Microbial and Viral Pesticides. Marcel Dekker, New York, NY.Google Scholar
Dubois, N.R., Reardon, R.C., and Kolodny-Hirsch, D.M.. 1988. Field efficacy of the NRD-12 strain of Bacillus thuringiensis against gypsy moth (Lepidoptera: Lymantriidae). J. econ. Ent. 81: 16721677.Google Scholar
Fleming, R., and Retnakaran, A.. 1985. Evaluating single treatment data using Abbott's formula with reference to insecticides. J. econ. Ent. 78: 11791181.Google Scholar
Haliburton, W. 1978. A comparison of empirical equations used to approximate the drop/stain diameter relationship of a volatile oil-based spray fluid on KromekoteR paper. Inf. Rep. FPM-X-8. Environ. Canada, Can. For. Serv., For. Pest Mge. Inst., Sault Ste. Marie, Ont. 16 pp.Google Scholar
Kaupp, W.J., and Burke, F.R.. 1984. A staining technique for inclusion bodies of a granulosis virus. Tech. Note 1. Environ. Canada, Can. For. Serv., For. Pest Mge. Inst., Sault Ste. Marie, Ont. 2 pp.Google Scholar
Kaupp, W.J., Cunningham, J.C., Meating, J.H., Howse, G.M., and Denys, A.. 1988. Aerial spray trials with Disparvirus in Ontario in 1986. Inf. Rep. FPM-X-82. Can. For. Serv., Sault Ste. Marie, Ont. 7 pp.Google Scholar
Kolodny-Hirsch, D.M. 1986. Evaluation of methods for sampling gypsy moth (Lepidoptera: Lymantriidae) egg mass populations and development of sequential sampling plans. Environ. Ent. 15: 122127.CrossRefGoogle Scholar
Lewis, F.B. 1981. Registration. pp. 514515in Doane, C.C., and McManus, M.L. (Eds.), The Gypsy Moth: Research Towards Integrated Pest Management. Tech. Bull. 1584. USDA For. Serv., Sci. and Education Agency.Google Scholar
Lewis, F.B., McManus, M.L., and Schneeberger, N.F.. 1979. Guidelines for the use of Gypchek to control gypsy moth. Res. Pap. NE-441. USDA Forest Service, NE For. Exp. Sta., Broomall, PA. 9 pp.Google Scholar
Meating, J.H., Lawrence, H.D., Cunningham, J.C., and Howse, G.M.. 1983. The gypsy moth in Ontario: General surveys, spray trials and forecasts for 1983. Inf. Rep. O-X-352. Can. For. Serv., Sault Ste. Marie, Ont. 14 pp.Google Scholar
Podgwaite, J.D. 1985. Gypchek: Past and future strategies for use. pp. 9193in Proc. Symp. Microbial Control of Spruce Budworms and Gypsy Moths. Gen. Tech. Rep. NE-100. USDA Forest Service, NE For. Exp. Sta., Broomall, PA.Google Scholar
Podgwaite, J.D., Reardon, R.C., Kolodny-Hirsch, D.M., and Walton, G.S.. 1991. Efficacy of ground application of the gypsy moth (Lepidoptera: Lymantriidae) nucleopolyhedrosis virus product, Gypchek. J. econ. Ent. 84: 440444.Google Scholar
Reiff, W. 1911. The wilt disease or flacherie of the gypsy moth. Contrib. Ent. Lab. 36. Bussey Inst., Harvard Univ.Google Scholar
Shapiro, M. 1981. In vivo production at Otis Air Base, Mass. pp. 464467in Doane, C.C., and McManus, M.L. (Eds.), The Gypsy Moth: Research Towards Integrated Pest Management. Tech. Bull. 1584. USDA For. Serv., Sci. and Education Agency.Google Scholar
van Frankenhuyzen, K. 1990. Development and current status of Bacillus thuringiensis for control of defoliating forest insects. For. Chron. 66: 498507.CrossRefGoogle Scholar