Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T16:30:11.244Z Has data issue: false hasContentIssue false

DENSITY AND PUPATION SITE OF APTEROUS FEMALE BAGWORMS, METISA PLANA (LEPIDOPTERA: PSYCHIDAE), INFLUENCE THE DISTRIBUTION OF EMERGENT LARVAE

Published online by Cambridge University Press:  31 May 2012

Marc Rhainds
Affiliation:
Centre for Pest Management, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Gerhard Gries*
Affiliation:
Centre for Pest Management, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Ahmad Saleh
Affiliation:
London Sumatra Indonesia, Bah Lias Research Station, Medan, Sumatra Utara, Indonesia
*
1 Author to whom all correspondence should be addressed.

Abstract

In an oil palm plantation in northeast Sumatra, Indonesia, we tested the hypotheses that selection of pupation site by female bagworms, Metisa plana (Walker), influences the distribution of emergent larvae, and that intertree dispersal by larvae is density dependant. Similar intratree distributions of empty female pupal cases and early instars and significant regressions between numbers of female pupal cases and larvae per leaf for 36 out of 39 palms indicated that larvae generally remain on the same leaf where they emerged. Proportions of early instars per female pupal case decreased with increasing densities of female pupal cases per tree and were greater on trees surrounding most heavily infested palms, suggesting that intertree dispersal of early instars is density dependent. Interspecific comparisons of life history constraints between M. plana and the allopatric bagworm Oiketicus kirbyi (Guilding) reveal different selective pressures that may have converged and favoured the development of an identical life history trait.

Résumé

Dans une plantation de palmiers à huile localisée au nord-est de Sumatra en Indonésie, nous avons testé l’hypothèse que le site de pupaison des femelles psychides, Metisa plana (Walker), influence la distribution de leur progénie, et que la dispersion des larves entre différents palmiers est fonction de la densité de population. Les larves et les enveloppes pupales females étaient réparties de manière similaire entre les cîmes supérieure, moyenne et inférieure des palmiers. De plus, nous avons trouvé des corrélations positives entre le nombre de larves et le nombre d’enveloppes pupales femelles par feuille pour 36 des 39 palmiers examinés. Ces résultats démontrent que les larves débutent généralement leur développement sur la feuille-même où elles ont écloses. Nos données soutiennent l’hypothèse que la dispersion des larves entre les palmiers est plus fréquente quand la densité de population augmente : les proportion de larves par enveloppe pupale femelle décroissent avec des densités accrues d’enveloppes pupales femelles par palmier, et sont plus élevées pour les palmiers situés à proximité des palmiers densément peuplés. Une comparaison entre différentes contraintes évolutives pour deux psychides allopatriques, M. plana et Oiketicus kirbyi (Guilding), révèlent différentes pressions sélectives qui semblent avoir con vergées pour favoriser le développement d’un trait de vie identique.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basri, M.W. 1993. Life history, ecology and economic impact of the bagworm, Metisa plana Walker (Lepidoptera: Psychidae) on the oil palm, Elaeis guineensis Jacquin (Palmae), in Malaysia. Ph.D. thesis, University of Guelph, Guelph, Ontario.Google Scholar
Basri, M.W., and Kevan, P.G., 1995. Life history and feeding behaviour of the oil palm bagworm, Metisa plana Walker (Lepidoptera: Psychidae). Elaeis 7: 1834.Google Scholar
Berger, A. 1992. Larval movements of Chilo partellus (Lepidoptera: Pyralidae) within and between plants: timing, density responses and survival. Bulletin of Entomological Research 82: 441448.Google Scholar
Campbell, R.W., Hubbard, D.L., and Sloan, R.J.. 1975. Patterns of gypsy moth occurrence within a sparse and numerically stable population. Environmental Entomology 4: 535542.CrossRefGoogle Scholar
Cox, D.L., and Potter, D.A.. 1986. Aerial dispersal of larval bagworms, Thyridopteryx ephemeraeformis (Lepidoptera: Psychidae). The Canadian Entomologist 118: 525536.CrossRefGoogle Scholar
Cox, D.L., and Potter, D.A.. 1988. Within-crown distributions of male and female bagworms (Lepidoptera: Psychidae) pupae on juniper as affected by host defoliation. The Canadian Entomologist 120: 559567.CrossRefGoogle Scholar
Cruttwell, R.E. 1974. The bagworms (Lep.: Psychidae) of Trinidad and their natural enemies. Technical Bulletin of the Commonwealth Institute of Biological Control 17: 127159.Google Scholar
Davis, R.D. 1964. Bagworm moths of the Western Hemisphere. Bulletin of the United States National Museum 244.Google Scholar
Davis, D.R. 1975. A review of the West Indian moths of the family Psychidae with descriptions of new taxa and immature stages. Smithsonian Contributions to Zoology 188.Google Scholar
Ferguson, H.J., Eaton, J.L., Rogers, C.E., and Simmons, A.M.. 1994. Rearing density effects on pupal weight, wing width, development, and female adult activity of the fall armyworm (Lepidoptera: Noctuidae). Annals of the Entomological Society of America 87: 823830.CrossRefGoogle Scholar
Gara, R.I., Sarango, A., and Cannon, P.G.. 1990. Defoliation of an ecuadorian mangrove forest by the bagworm Oiketicus kirbyi Guilding (Lepidoptera: Psychidae). Journal of Tropical Forest Science 3: 181186.Google Scholar
Genty, P., de Chenon, R. Desmier, and Morin, J.P.. 1978. Las plagas de la palma aceitera en America Latina. Oléagineux 33: 395396.Google Scholar
Gross, S.W., and Fritz, R.S.. 1982. Differential stratification, movement and parasitism of sexes of the bagworm Thyridopteryx ephemeraeformis on redcedar. Ecological Entomology 7: 149154.CrossRefGoogle Scholar
Hackman, W. 1966. On wing reduction and loss of wings in Lepidoptera. Notulae Entomologica 46: 116.Google Scholar
Harrison, S. 1994. Resources and dispersal as factors limiting a population of the tussock moth (Orgyia vetusta), a flightless defoliator. Oecologia 99: 2734.CrossRefGoogle ScholarPubMed
Harrison, S. 1997. Persistent, localized outbreaks in the western tussock moth Orgyia vetusta: the roles of resource quality, predation and poor dispersal. Ecological Entomology 22: 158166.CrossRefGoogle Scholar
Hartley, C.W. 1988. The oil palm (Elaeis guineensis). Longman, New York.Google Scholar
Hunter, A.F. 1995. The ecology and evolution of reduced wings in forest macrolepidoptera. Evolutionary Ecology 9: 275287.CrossRefGoogle Scholar
Lagoy, P.K., and Barrows, E.M.. 1989. Larval-sex and host species effects on location of attachment sites of last-instar bagworms, Thyridopteryx ephemeraeformis (Lepidoptera: Psychidae). Proceedings of the Entomological Society of Washington 91: 468472.Google Scholar
Li, J., and Margolies, D.C.. 1993. Effects of mite age, mite density, and host quality on aerial dispersal behavior in the twospotted spider mite. Entomologia Experimentalis et Applicata 68: 7986.CrossRefGoogle Scholar
Mason, R.R., and McManus, M.L.. 1981. Larval dispersal of the gypsy moth. pp. 161202in Doane, C.C., and McManus, M.L. (Eds.), The gypsy moth: research toward integrated pest management. United States Department of Agriculture Technical Bulletin 1584.Google Scholar
Miliken, G.A., and Johnson, D.E.. 1984. Analysis of messy data: designed experiments. Lifetime Learning Publications, Toronto.Google Scholar
Mitchell, R.G. 1979. Dispersal of early instars of the Douglas-fir tussock moth. Annals of the Entomological Society of America 72: 291297.Google Scholar
Newman, D. 1980. Susceptilidad de algunos arboles al ataque defoliador del gusano canasta (Oiketicus kirbyi Guilding) en el valle del cauca. Investigation Forestal Carton de Colombia S.A. Informe de Investigacíon 63.Google Scholar
Poirier, L.M., and Borden, J.H.. 1992. Some effects of population density on the life history of the obliquebanded leafroller Choristoneura rosaceana Harris (Lep., Tortricidae). Journal of Applied Entomology 113: 307314.CrossRefGoogle Scholar
Ponce, O., Peláez, H., and de la Cruz, J.L.. 1979. Estudio biologico del gusano canasta Oiketicus kirbyi Lands Guilding (Lepidoptera: Psychidae) en platano y reconocimiento de sus principales parasitoides. Acta Agronomica 29: 4146.Google Scholar
Price, P.W., Cobb, N., Craig, T.P., Wilson Fernandes, G., Itami, J.K., Mopper, S., and Preszler, R.W.. 1990. Insect herbivore population dynamics on trees and shrubs: new approaches relevant to latent and eruptive species and life table development. pp. 138in Bernays, E.A. (Ed.), Insect-plant interactions. Vol. II. CRC Press, Boca Raton, FL.Google Scholar
Ramachandran, R. 1987. Influence of host-plants on the wind dispersal and the survival of an Austalian geometrid caterpillar. Entomologia Experimentalis et Applicata 44: 289294.Google Scholar
Rhainds, M., Gries, G., and Castrillo, G.. 1995 a. Pupation site affects the mating success of small but not large female bagworms, Oiketicus kirbyi (Lepidoptera: Psychidae). Oikos 74: 213217.Google Scholar
Rhainds, M., Gries, G., and Chinchilla, C.. 1995 b. Pupation site and emergence time influence the mating success of bagworm females, Oiketicus kirbyi (Lepidoptera: Psychidae). Entomologia Experimentalis et Applicata 77: 183187.Google Scholar
Rhainds, M., Gries, G., and Rodriguez, R.. 1995 c. Evidence for mate choice by male bagworms, Oiketicus kirbyi (Guilding) (Lepidoptera: Psychidae). The Canadian Entomologist 127: 799803.Google Scholar
Rhainds, M., Gries, G., and Chew, P.S.. 1997 a. Adaptive significance of density-dependent ballooning by bagworm larvae, Metisa plana (Walker) (Lepidoptera: Psychidae). The Canadian Entomologist 129: 927931.Google Scholar
Rhainds, M., Gries, G., and Saleh, A.. 1997 b. Sex-specific habitat utilization by bagworms (Lepidoptera: Psychidae). The Canadian Entomologist 129: 199200.Google Scholar
Roff, D.A. 1986. The evolution of wing dimorphism in insects. Evolution 40: 10091020.Google Scholar
Roff, D.A. 1990. The evolution of flightlessness in insects. Ecological Monographs 60: 389421.CrossRefGoogle Scholar
Rossiter, M.C. 1987. Use of a secondary host by non-outbreak populations of the gypsy moth. Ecology 68: 857868.Google Scholar
Sappington, T.W., and Showers, W.B.. 1992. Lack of translation of density-induced morphological polyphenism to long-duration flight behaviour of black cutworm (Lepidoptera: Noctuidae). Annals of the Entomological Society of America 85: 188194.CrossRefGoogle Scholar
Sattler, K. 1991. A review of wing reduction in Lepidoptera. Bulletin of the British Museum (Natural History) Entomology 60: 243288.Google Scholar
Stephens, C.S. 1962. Oiketicus kirbyi (Lepidoptera: Psychidae), a pest of bananas in Costa Rica. Journal of Economic Entomology 55: 381386.CrossRefGoogle Scholar
Syed, R.A. 1978. Bionomics of 3 important species of bagworms on oil palm. Malaysian Agriculture Journal 51: 392398.Google Scholar
Syed, R.A., and Saleh, A.. 1991. Management of insect pests of oil palm in PTPP London Sumatra Indonesia plantations in Sumatra, Indonesia. pp. 577590in Proceedings of the PORIM International Palm Oil Conference—Agriculture, Kuala Lumpur, Malaysia.Google Scholar
Syed, R.A., and Shah, S.. 1977. Some important aspects of insect pest management in oil palm estates in Sabah, Malaysia. pp. 577590in Earp, D.A., and Newall, W. (Eds.), International development in oil palm. Incorporated Society of Planters, Kuala Lumpur, Malaysia.Google Scholar
Terry, I., Bradley, J.R., and Van Duyn, J.W.. 1989. Establishment of early instar Heliothis zea on soybeans. Entomologia Experimentalis et Applicata 51: 233240.CrossRefGoogle Scholar
Torres-Vila, L.M., Stockel, J., Roehrich, R., and Rodrigues-Molina, M.C.. 1997. The relation between dispersal and survival of Lobesia botrana larvae and their density in vine inflorescences. Entomologia Experimentalis et Applicata 84: 109114.Google Scholar
van der Linde, V.R.J. 1971. Der Schwebeflug der jungen Raupen des Schwammspinners (Lymantria dispar L.) und der Einfluß der Nahrungspflanze auf das Entstehen desselben. Zeitschrift für Angewandte Entomologie 67: 316324.CrossRefGoogle Scholar
Villanueva, A., and Avila, M.. 1987. El gusano canasta Oiketicus kirbyi Guilding. Fedepalma, Colombia. 28 pp.Google Scholar
Villanueva, A., and Granda Paz, E.. 1986. Experiencias con el Oiketicus kirbyi, Guild, en palmeras de la Costa S.A. pp. 9498in Conference Proceedings, IV Mesa Redonda Latinoamericana sobre palma aceitera. Départemento del César, Valledupar, Colombia.Google Scholar
Weseloh, R.M. 1997. Evidence for limited dispersal of larval gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae). The Canadian Entomologist 129: 355361.CrossRefGoogle Scholar
Weyman, G.S., Sunderland, K.D., and Fenlon, J.S.. 1994. The effect of food deprivation on aeronautic dispersal behaviour (ballooning) in Erigone spp. spiders. Entomologia Experimentalis et Applicata 73: 121126.Google Scholar
Wood, B.J. 1968. Pests of oil palm in Malaysia and their control. Incorporated Society of Planters, Kuala Lumpur, Malaysia.Google Scholar
Zurlini, G., and Robinson, A.. 1979. Larval dispersal as related to density in wild and laboratory strains of Delia (= Hylemia) antiqua Meigen. Netherlands Journal of Zoology 29: 402417.Google Scholar