Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-12-01T02:52:10.440Z Has data issue: false hasContentIssue false

Cumulative temperature requirements and development thresholds in two populations of Dicyphus hesperus (Hemiptera: Miridae)1

Published online by Cambridge University Press:  02 April 2012

David R. Gillespie*
Affiliation:
Pacific Agri-Food Research Centre, PO Box 1000 Agassiz, British Columbia, Canada V0M 1A0
J. Antonio Sanchez Sanchez
Affiliation:
Centro de Investigación y Desarrollo Agroalimentario, Departamento Protección Vegetal, C/Mayor, s/n La Alberca, 30150 Murcia, Spain
R.R. McGregor
Affiliation:
Department of Biology, Douglas College, 700 Royal Avenue, PO Box 2503, New Westminster, British Columbia, Canada V3L 5B2
*
2Corresponding author (e-mail: [email protected]).

Abstract

Cumulative temperature requirements and development thresholds were determined for two populations of Dicyphus hesperus Knight, 1943 to compare their suitability for use in biological control in greenhouse vegetable crops. The populations were from near Summerland, British Columbia, Canada (49°36′N, 119°40′W, at 334 m elevation) and from near Woody, California, United States of America (35°42′N, 118°50′W, at 500 m elevation). Eggs of the California (CA) population had a higher cumulative temperature requirement for hatch than those of the British Columbia (BC) population. Males of the CA population had a slightly lower cumulative temperature requirement for development from hatch to adult than males of the BC population. The populations did not differ with respect to development thresholds. Males of the CA population experienced higher mortality during development at 35 °C than BC males or females of either population. Males and females of both populations developing at 35 °C were significantly smaller than those developing at more moderate temperatures. The differences between populations with respect to development were biologically trivial. With respect to the effects of temperature on development time under greenhouse conditions, the two populations appear to be equally suitable for use in greenhouses.

Résumé

On a déterminé les conditions de températures accumulées et les seuils de développement de deux populations de Dicyphus hesperus Knight, 1943 afin de comparer la pertinence d'utilizer ces dernières pour la lutte biologique des cultures de légumes de serre. Les populations provenaient des environs de Summerland, en Colombie-Britannique, au Canada (49°36′N, 119°40′O à 334 m d'altitude), et des environs de Woody, en Californie, aux États-Unis (35°42′N, 118°50′O à 500 m d'altitude). Les conditions de températures accumulées des œufs de la population californienne étaient plus élevées que celles de la population de la Colombie-Britannique. Les mâles de la population californienne ont présenté des conditions de températures accumulées légèrement inférieures à celles des mâles de la population de la Colombie-Britannique. Les seuils de développement des deux populations étaient identiques. Les mâles de la population californienne ont présenté un taux de mortalité plus élevé durant leur développement à 35 °C que les mâles de la Colombie-Britannique ou que les femelles de l'une ou l'autre population. Les mâles et les femelles des deux populations qui se sont développés à 35 °C étaient beaucoup plus petits que ceux s'étant développés à des températures modérées. Les différences existant entre les populations en ce qui a trait au développement étaient négligeables sur le plan biologique. Du point de vue de l'effet des températures sur le temps de développement en serre, les deux populations semblent convenir également aux fins d'utilization en serre.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Publication 658 of the Pacific Agri-Food Research Centre.

References

Beck, S.D. 1980. Insect photoperiodism. 2nd edition. New York: Academic PressGoogle Scholar
Barlow, N.D., Goldson, S.L., McNeill, M.R. 1994. A prospective model of the phenology of Microctonus hyperodae (Hymenoptera: Braconidae), a potential biological control agent of Argentine stem weevil in New Zealand. Biocontrol Science and Technology 4: 375–86CrossRefGoogle Scholar
Baust, J.G., Lee, R.E. 1982. Environmental triggers to cryoprotectant modulation in separate populations of the gall fly Eurosta solidaginsis. Journal of Insect Physiology 28: 431–6CrossRefGoogle Scholar
Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., Mackauer, M. 1974. Temperature requirements of some aphids and their parasites. Journal of Applied Ecology 11: 431–8Google Scholar
Gillespie, D.R., Quiring, D.M.J. 1993. Extending seasonal limits on biological control. International Organization for Biological and Integrated Control of Noxious Animals and Plants / West Palearctic Regional Section Bulletin 16(2): 43–5Google Scholar
Honěk, A. 1996. Geographical variation in thermal requirements for insect development. European Journal of Entomology 93: 303–12Google Scholar
Ikemoto, T., Takai, K. 2000. A new linearized formula for the law of total effective temperature and the evaluation of line fitting methods with both variables subject to error. Environmental Entomology 29: 671–82Google Scholar
Julien, M., White, G. 1997. Biological control of weeds: theory and application. Canberra, Australia: Australian Centre for International Agricultural ResearchGoogle Scholar
Klingenberg, C.P., Spence, J.R. 1997. On the role of body size for life history evolution. Ecological Entomology 22: 5568Google Scholar
Kukal, O., Duman, J.G. 1989. Switch in the overwintering strategy of two insect species and latitudinal differences in cold hardiness. Canadian Journal of Zoology 67: 825–7Google Scholar
Lamb, R.J., MacKay, P.A., Gerber, G.H. 1987. Are development and growth of pea aphids, Acrythosiphum pisum in North America adapted to local temperatures? Oecologia 72: 170–7CrossRefGoogle Scholar
Lehane, R. 1998. Breadfruit insect succumbs to a ladybird beetle. Partners in Research for Development 11: 2531Google Scholar
McGregor, R.R., Gillespie, D.R., Quiring, D.M.J., Foisy, M.R.J. 1999. Potential use of Dicyphus hesperus Knight (Heteroptera: Miridae) for biological control of pests of greenhouse tomatoes. Biological Control 16: 104–10Google Scholar
Mohaghegh-Neyshabouri, J., DeClerq, P., Degheele, D. 1996. Influence of female body weight on reproduction in laboratory-reared Podisus maculiventris (Heteroptera: Pentatomidae). Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 63(3a): 693–6Google Scholar
Mohaghegh, J., DeClerq, P., Tirry, L. 1999. Effects of rearing history and geographic origin on reproduction and body size of the predator Podisus nigrispinus. European Journal of Entomology 96: 6972Google Scholar
Peterson, R.K.D., Meyer, S.J. 1995. Relating degree-day accumulations to calendar dates: alfalfa weevil (Coleoptera: Curculionidae) egg hatch in the North Central United States. Environmental Entomology 24: 1404–7Google Scholar
Ruberson, J.R., Yeargen, K.V., Newton, B.L. 2001 Variation in diapause responses between geographic populations of the predator Geocoris punctipes (Heteropera: Geocordiae) Annals of the Entomological Society of America 94: 116–22Google Scholar
Sanchez, J.A., Lacasa, A. 2002. Modelling population dynamics of Orius laevigatus and O. albidipennis (Hemiptera: Anthocoridae) to optimize their use as biological control agents of Frankliniella occidentalis (Thysanoptera: Thripidae). Journal of Entomological Research 92: 7788Google Scholar
Saunders, D.S., Hayward, S.A.L. 1998. Geographical and diapause releated cold tolerance in the blowfly Calliphora vicina. Journal of Insect Physiology 44: 541–51CrossRefGoogle Scholar
SPSS Inc. 1997. SYSTAT® 7.0 for Windows: statistics [computer program]. Chicago: SPSS IncGoogle Scholar
van den Meiracker, R.A.F. 1994. Induction and termination of diapause in Orius predatory bugs. Entomologia Experimentalis et Applicata 73: 127–37Google Scholar