Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T11:07:46.388Z Has data issue: false hasContentIssue false

CONTROL OF THE ENGLISH GRAIN APHID [SITOBION AVENAE (F.)] (HOMOPTERA: APHIDIDAE) AND THE OAT-BIRDCHERRY APHID [RHOPALOSIPHUM PADI (L.)] (HOMOPTERA: APHIDIDAE) ON WINTER CEREALS1

Published online by Cambridge University Press:  31 May 2012

K.A. Neil
Affiliation:
P.O. Box 410, Canning, Nova Scotia, Canada B0P 1H0
S.O. Gaul
Affiliation:
Atlantic Food and Horticulture Research Centre, Agriculture and Agri-Food Canada, 32 Main St., Kentville, Nova Scotia, Canada B4N 1J5
K.B. McRae
Affiliation:
Atlantic Food and Horticulture Research Centre, Agriculture and Agri-Food Canada, 32 Main St., Kentville, Nova Scotia, Canada B4N 1J5

Abstract

Seasonal abundance of Sitobion avenae (F.) and Rhopalosiphum padi (L.) was monitored in Nova Scotia winter wheat plots. Rhopalosiphum padi was the more common aphid species during "heading out." Winter wheat cultivars differed in their resistance to R. padi development; the highest reproductive rate was on ’Absolvent.’ The effect of chemicals used in intensive cereal management on R. padi and Coccinella septempunctata (L.) was assessed. Dimethoate and carbaryl caused similar high mortality to both insects, but pirimicarb was more toxic to the aphid than to its predator. Over a 2-year period, field plots that received regular pirimicarb treatments for selective aphid control early in the growing season showed a 9% increase in wheat yield, compared with the checks and plots that received carbaryl. Wheat yield increased 18% when pirimicarb was used later in the season; when applied in both periods, pirimicarb gave a total yield increase of nearly 30%. Late applications of carbaryl alone, or in combination with pirimicarb, increased yields by only 9% over the controls. Half of the yield increase (18% vs. 9%) with late season control by pirimicarb was lost with the addition of carbaryl, which minimized the C. septempunctata population for nonselective insect control. Rhopalosiphum padi numbers from June 20 to July 15 had the greatest impact on yield in these plots, and natural control agents including C. septempunctata accounted for a 9% increase in yield.

Résumé

L’abondance saisonnière de Sitobion avenae (F), et de Rhopalosiphum padi (L.) a été évaluée dans des champs de blé d’hiver en Nouvelle-Ecosse. Rhopalosiphum padi s’est avéré le puceron le plus commun dans les champs durant la période d’épiaison. Les divers cultivars de blé d’hiver n’ont pas tous la même résistance à l’envahissement de R. padi et le taux le plus élevé de reproduction du puceron a été enregistré dans le cultivar «Absolvent». L’effet sur R. padi et sur Coccinella septempunctata (L.) de produits chimiques communément utilisés dans les cultures de céréales a été estimé. Le diméthoate et le carbaryl entraînent des taux de mortalité élevés semblables chez les deux espèces, mais le pirimicarbe a un effet plus toxique sur le puceron que sur son prédateur. Au cours d’une période de 2 ans, dans les champs soumis à des traitements au pirimicarbe à intervalles réguliers dans un effort de lutte spécifique contre certains pucerons au début de la saison de croissance, la récolte de blé a été de 9% plus élevée que dans les champs témoins ou les champs traités au carbaryl. Le rendement a augmenté de 18% lorsque le pirimicarbe a été utilisé plus tard dans la saison; après des applications au cours des deux périodes, le pirimicarbe a entraîné une augmentation totale de la récolte de près de 30%. Les applications tardives du carbaryl seul ou du carbaryl combiné au pirimicarbe n’ont permis qu’une augmentation de 9% du rendement par comparaison aux témoins. La moitié de l’augmentation du rendement (18% vs. 9%) après application tardive de pirimicarbe a été perdue par l’addition de carbaryl qui, à cause de ses effets non sélectifs, a diminué la population de C. septempunctata. C’est entre le 20 juin et le 15 juillet que le nombre de R. padi a eu le plus grand impact sur le rendement des champs et on peut attribuer aux agents naturels de lutte, tels C. septempunctata, une augmentation de 9% du rendement.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J.B., and Drew, M.F.. 1964. Grain aphids in New Brunswick I. Field development on oats. Canadian Journal of Zoology 42: 735740.CrossRefGoogle Scholar
Angalet, G.W., and Jacques, R.L.. 1975. The establishment of Coccinella septempunctata L. in the continental United States. Animal and Plant Health Service Cooperative Economic Insect Report 25: 883884.Google Scholar
Anonymous. 1993. Atlantic Provinces Field Crops Guide to Variety and Pesticide Selection. Atlantic Provinces Agricultural Services Co-ordinating Committee, Fredricton N.B., Agdex 100.32, Publication 100a.Google Scholar
Apablaza, J.U., and Robinson, A.G.. 1967. Effect of three species of aphids on barley, winter wheat, or oats at various stages of plant growth. Canadian Journal of Plant Science 47: 367373.CrossRefGoogle Scholar
Blackman, R.L., and Eastop, V.F.. 1984. Aphids on the Worlds Crops: An Identification and Information Guide. John Wiley and Sons, Chichester, UK.Google Scholar
Canadian Agri-Food Research Council. 1995. Integrated Pest Management in Canada. Canadian Agri-Food Research Council, Expert Committee on Integrated Pest Management, and Agriculture and Agri-Food Canada, Ottawa.Google Scholar
Coon, B.F. 1959. Grass hosts of cereal aphids. Journal of Economic Entomology 52: 994996.Google Scholar
Cottier, W. 1953. Aphids of New Zealand. New Zealand Department of Scientific and Industrial Research Bulletin 106.Google Scholar
Croft, B.A., and Brown, A.W.A.. 1975. Responses of arthropod natural enemies to insecticides. Annual Review of Entomology 20: 285335.Google Scholar
Dean, G.J. 1973. Aphid colonization of spring cereals. Annals of Applied Biology 75: 183193.CrossRefGoogle Scholar
Forbes, A.R. 1962. Aphid populations and their damage to oats in British Columbia. Canadian Journal of Plant Science 42: 660666.CrossRefGoogle Scholar
Genstat Committee. 1993. Genstat 5 Release 3 Reference Manual. Clarendon Press, Oxford.Google Scholar
Genstat Committee. 1995. Genstat 5 Procedure Library Manual, Release 3 [3]. The Numerical Algorithms Group Ltd., Oxford.Google Scholar
George, K.S. 1975. The establishment of economic damage thresholds with particular reference to cereal aphids. pp. 7985in Proceedings of the 8th British Insecticide and Fungicide Conference, Vol. 1.Google Scholar
Harper, A.M. 1973. English grain aphid: effect on yield of wheat in Alberta. Journal of Economic Entomology 66: 1326.CrossRefGoogle Scholar
Hinz, B., Daebeler, F., and Belau, L.. 1976. Wirkung verschiedener Getreideblattlausen aus Ertag und Qualitat von Wirterweizen (Kurze Mitteilung). Archiv fuer Phytopathologie und Pflanzenschutz 12: 363365.Google Scholar
Hsu, S.J. 1963. Some notes on the biology of Rhopalosiphum padi (L.). Plant Protection Bulletin of Taiwan 5: 247254.Google Scholar
Jessop, C.T. 1967. A note on the relative incidence of Rhopalosiphum padi (L.) on different varieties of ryegrass. New Zealand Entomologist 3: 29.Google Scholar
Kieckhefer, R.W., and Kantack, B.H.. 1980. Losses in yield in spring wheat in South Dakota caused by cereal aphids. Journal of Economic Entomology 73: 582585.CrossRefGoogle Scholar
Kieckhefer, R.W., and Gellner, J.L.. 1992. Yield losses in winter wheat caused by low-density cereal aphid populations. Agronomy Journal 84: 180183.Google Scholar
Kolbe, W. 1969. Studies on the occurrence of different aphid species as the cause of cereal yield and quality loss. Pflanzenschutz-Nachrichten Bayer 22: 171204.Google Scholar
Kolbe, W. 1973. Studies on the occurrence of cereal aphids and the effect of feeding damage on yield in relation to infestation density levels and control. Pflanzenschutz-Nachrichten Bayer 26: 396410.Google Scholar
Kolbe, W., and Linke, W.. 1974. Studies of cereal aphids; the occurrence, effect on yield in relationship to density level and their control. Annals of Applied Biology 77: 8587.Google Scholar
Larsson, H. 1991. Economic importance of cereal aphids at different cost levels. pp. 187196in Proceedings of the 32nd Swedish Crop Protection Conference, Uppsala, Sweden.Google Scholar
Latteur, G. 1976. Les purcerons des cereales: biologie, nuisance, ennemis. Memoires du Central de Recherches Agronomiques de l'etat Gembloux 3.Google Scholar
Lowe, H.J.B. 1977. Testing for resistance to cereal aphids in cereals and sugar beets. Annals of Applied Biology 88: 401406.Google Scholar
Markkula, M. 1979. Pests of cultivated plants in Finland in 1978. Annales Agriculturae Fenniae 18: 9299.Google Scholar
Martin, R.A., and Johnston, H.W.. 1982. Diseases and insect pests of cereals in the Atlantic Provinces. Advisory Committee on Cereal and Protein Crops Publication 116.Google Scholar
Noble, M.D. 1958. A simplified clip cage for aphid investigations. The Canadian Entomologist 90: 760.CrossRefGoogle Scholar
Olszak, R. 1982. Impact of different pesticides on Ladybird beetles (Coccinellidae: Coleoptera). Roczniki Nauk Rolniczych Seriae 12: 141149.Google Scholar
Orlob, G.B. 1961. Biology and taxonomy of cereal and grass aphids in New Brunswick (Homoptera: Aphididae). Canadian Journal of Zoology 39: 495503.Google Scholar
Raatikainen, M., and Tinnila, A.. 1961. Occurrence and control of aphids causing damage to cereals in Finland in 1959. Publication of the Finnish State Agricultural Research Board 183.Google Scholar
Rautapaa, J. 1970. Preference of cereal aphids for various cereal varieties and species of Gramineae, Juncaceae and Cyperaceae. Annales Agriculturae Fenniae 9: 267277.Google Scholar
Rautapaa, J., and Uoti, L.. 1976. Control of Rhopalosiphum padi (L.)(Hom., Aphididae) on cereals. Annales Agriculturae Fenniae 15: 101110.Google Scholar
Richards, W.R. 1960. A synopsis of the genus Rhopalosiphum in Canada (Homoptera: Aphididae). Memoirs of the Entomological Society of Canada 92.Google Scholar
Robert, Y., and Rouze-Jouan, J.. 1975. Étude des populations ailées de pucerons des céréals Acythosiphon (Metopolophium) dirhodum Wlk., A.(M.) festucae Wlk., Macrosiphum (Sitobion) avenae F., M.(S.) fragariae Wlk. et Rhopalosiphum padi L., en Bretange de 1967 a 1975; examen des possibilités de prévision des attaques. Academie d'Agriculture de France 61: 10061016.Google Scholar
Snedecor, G.W., and Cochran, W.G.. 1980. Statistical Methods. Iowa State University Press, Ames, IA.Google Scholar
Statistics Canada. 1996. Statistics Canada Catalogue Nos. 21–001-XBP, Farm cash receipts and farm product price index, Vol. 57, and 22–002-XBP, Field crop reporting series, Vol 75.Google Scholar
Suter, H., and Keller, S.. 1977. Okologische Untersuchung an feldbaulich wichtigen Blattlausarten als Gundlage fur eine Befallsprangnose. Zeitschrift fur Angewandte Entomologie 183: 7579.Google Scholar
Vickerman, G.P. 1977. Monitoring and forecasting insect pests of cereals. pp. 227234in Proceedings of the 1977 British Crop Protection Conference—Pests and Diseases, Vol. 1.Google Scholar
Wetzel, T., and Freier, B.. 1975. Kenntnis der Vermehrungspotenz und des Massenwechsel von Getreideblattausen als Voraussetzung zur Prognose und gezielten Bekampfung. Archiv fuer Phytopathogie und Pflanzenschutz 11: 133152.Google Scholar
Wood, E.A. 1965. Effect of foliage infestation on the English Grain Aphid on yield of Triumph wheat. Journal of Economic Entomology 58: 778779.Google Scholar
Zadoks, J.C., Chang, T.T., and Konzak, C.F.. 1974. A decimal code or the growth stages of cereals. Weed Research 14: 415421.CrossRefGoogle Scholar
Zhou, X., and Carter, N.. 1991. The effects of nitrogen and fungicide on cereal aphid population development and the consequences for aphid-yield relationship in winter wheat. Annals of Applied Biology 119: 433441.CrossRefGoogle Scholar