Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T11:39:03.962Z Has data issue: false hasContentIssue false

Comparison of reproductive capacity among univoltine, semivoltine, and re-emerged parent spruce beetles (Coleoptera: Scolytidae)

Published online by Cambridge University Press:  02 April 2012

E. Matthew Hansen*
Affiliation:
USDA–Forest Service, Rocky Mountain Research Station, 860 North 1200 East Logan, Utah 84321, United States of America
Barbara J. Bentz
Affiliation:
USDA–Forest Service, Rocky Mountain Research Station, 860 North 1200 East Logan, Utah 84321, United States of America
*
1 Corresponding author (e-mail: [email protected]).

Abstract

New spruce beetle, Dendroctonus rufipennis (Kirby), adults of univoltine and semivoltine life cycles, as well as re-emerged parent beetles, were laboratory-tested for differences in reproductive capacity and brood characteristics. Parameters measured from the three groups include dry weight, lipid content, and egg production. Brood characteristics measured include egg length, development rates, and survival densities. Although there were some differences in dry weight and lipid content, females from the univoltine, semivoltine, and re-emerged parent groups did not greatly differ in egg production. Egg length was slightly smaller for eggs from univoltine parents, but other measured brood characteristics did not differ among the three parent groups, including the density of the surviving brood. In a field study, re-emerged parent beetles were determined to be flight capable. These findings imply that populations with univoltine broods will have higher growth rates than semivoltine populations. Consequently, the presence of univoltine broods, which is weather dependent, increases the risk of a beetle outbreak or can accelerate the rate of spruce mortality in an established outbreak. These results also indicate that re-emerged parent beetles can contribute substantially to brood production. Suppression strategies can be more effective if managers consider the ecological consequences of brood production from the three parent groups.

Résumé

Des nouveaux adultes du scolyte de l'épinette, Dendroctonus rufipennis (Kirby), à cycles univoltin et semivoltin, de même que des parents qui émergent une seconde fois, ont été testés en laboratoire afin d'y identifier les différences entre leurs potentiels reproductifs et entre les caractéristiques de leurs progénitures. Les variables mesurées chez les trois groupes sont la masse sèche, le contenu en lipides et la production d'oeufs. Nous avons examiné les caractéristiques de la progéniture, soit la longueur des oeufs, le taux de développement et les densités de survie. Il y a des différences de masse sèche et de contenu en lipides entre les femelles univoltines, les femelles semivoltines et les femelles émergées à nouveau, mais la production d'oeufs est semblable chez les trois groupes. Les oeufs issus des parents univoltins sont légèrement plus courts, mais les autres caractéristiques sont comparables chez les trois groupes de parents, y compris la densité des progénitures survivantes. Au cours de tests en nature, les parents émergés pour une seconde fois se sont révélés capables de voler. Ces résultats semblent vouloir dire que les populations aux progénitures univoltines auront des taux de croissance plus rapides que les populations semivoltines. En conséquence, la présence de progénitures univoltines, qui dépend de la température, augmente les risques d'une épidémie de scolytes ou peut accélérer la mortalité des épinettes au cours d'une épidémie établie. Ces résultats laissent croire aussi que les parents émergés pour une seconde fois peuvent contribuer substantiellement à la production de la progéniture. Les stratégies de suppression seront plus efficaces si les gestionnaires tiennent compte des conséquences écologiques de la reproduction des trois groupes de parents.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amman, G.D. 1972. Some factors affecting oviposition behavior of the mountain pine beetle. Environmental Entomology 1: 691–5CrossRefGoogle Scholar
Amman, G.D., Bartos, D.L. 1991. Mountain pine beetle offspring characteristics associated with females producing first and second broods, male presence, and egg gallery length. Environmental Entomology 20: 15621567.CrossRefGoogle Scholar
Ayres, M.P., Wilkens, R.T., Ruel, J.J., Lombardero, M.J., Vallery, E. 2000. Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi (Coleoptera: Scolytidae). Ecology 81: 2198–210CrossRefGoogle Scholar
Bentz, B.J., Logan, J.A., Vandygriff, J.C. 2001. Latitudinal variation in Dendroctonus ponderosae (Coleoptera: Scolytidae) development time and adult size. The Canadian Entomologist 133: 375–87CrossRefGoogle Scholar
Cole, L.C. 1954. The population consequences of life history phenomena. Quarterly Review of Biology 29: 103–37CrossRefGoogle ScholarPubMed
Coppedge, B.R., Stephen, F.M., Felton, F.W. 1995. Variation in female southern pine beetle size and lipid content in relation to fungal associates. The Canadian Entomologist 127: 145–54CrossRefGoogle Scholar
Coulson, R.N. 1979. Population dynamics of bark beetles. Annual Review of Entomology 24: 417–47CrossRefGoogle Scholar
Deacon, J.W. 1997. Modern mycology. 3rd edition. Malden, Massachusetts: Blackwell Science LtdGoogle Scholar
Dodds, K.J., Ross, D.W. 2002. Sampling range and range of attraction of Dendroctonus pseudotsugae pheromone-baited traps. The Canadian Entomologist 134: 343–55CrossRefGoogle Scholar
Dyer, E.D.A. 1969. Influence of temperature inversion on development of spruce beetle, Dendroctonus obesus (Mannerheim)(Coleoptera: Scolytidae). Journal of the Entomological Society of British Columbia 66: 41–5Google Scholar
Dyer, E.D.A. 1970. Larval diapause in Dendroctonus obesus (Mannerheim) (Coleoptera: Scolytidae). Journal of the Entomological Society of British Columbia 67: 1821Google Scholar
Dyer, E.D.A. 1973. Spruce beetle aggregated by the synthetic pheromone frontalin. Canadian Journal of Forest Research 3: 486–94CrossRefGoogle Scholar
Dyer, E.D.A., Hall, P.M. 1977. Factors affecting larval diapause in Dendroctonus rufipennis (Mannerheim) (Coleoptera: Scolytidae). The Canadian Entomologist 109: 1485–90CrossRefGoogle Scholar
Gray, T.G., Dyer, E.D.A. 1972. Flight-muscle degeneration in spruce beetles, Dendroctonus rufipennis (Coleoptera: Scolytidae). Journal of the Entomological Society of British Columbia 69: 41–3Google Scholar
Hagen, B.W., Atkins, M.D. 1975. Between generation variability in the fat content and behavior of Ips paraconfusus Lanier. Journal of Applied Entomology 79: 169–72Google Scholar
Hansen, E.M., Bentz, B.J., Turner, D.L. 2001 a. Temperature-based model for predicting univoltine brood proportions in spruce beetle (Coleoptera: Scolytidae). The Canadian Entomologist 133: 827–41CrossRefGoogle Scholar
Hansen, E.M., Bentz, B.J., Turner, D.L. 2001 b. Physiological basis for flexible voltinism in the spruce beetle (Coleoptera: Scolytidae). The Canadian Entomologist 133: 805–17CrossRefGoogle Scholar
Holsten, E.H., Thier, R.W., Munson, A.S., Gibson, K.E. 1999. The spruce beetle. US Forest Service Forest Insect and Disease Leaflet 127Google Scholar
Knight, F.B. 1960. Measurement of Engelmann spruce beetle populations. Ecology 41: 249–52CrossRefGoogle Scholar
Knight, F.B. 1961. Variations in the life history of Engelmann spruce beetle. Annals of the Entomological Society of America 54: 209–14CrossRefGoogle Scholar
Knight, F.B. 1969. Egg production by the Engelmann spruce beetle, Dendroctonus obesus, in relation to status of infestation. Annals of the Entomological Society of America 62: 448CrossRefGoogle Scholar
Linton, D.A., Safranyik, L., Whitney, H.S., Spanier, O.J. 1984. Possible genetic control of color morphs of spruce beetles. Canadian Forestry Service Research Notes 4: 52–3Google Scholar
Logan, J.A., Régnière, J., Powell, J.A. 2003. Assessing the impacts of global warming on forest pest dynamics. Frontiers in Ecology and the Environment 1: 130–7CrossRefGoogle Scholar
Lyon, R.L. 1958. A useful secondary sex character in Dendroctonus bark beetles. The Canadian Entomologist 90: 582–4CrossRefGoogle Scholar
Massey, C.L., Wygant, N.D. 1954. Biology and control of the Engelmann spruce beetle in Colorado. US Department of Agriculture Circular 944Google Scholar
McCambridge, W.F., Knight, F.B. 1972. Factors affecting spruce beetles during a small outbreak. Ecology 53: 830–9CrossRefGoogle Scholar
Mousseau, T.A., Roff, D.A. 1989. Adaptation to seasonality in a cricket: patterns of phenotypic and genotypic variance in body size and diapause expression along a cline in season length. Evolution 43: 1483–96CrossRefGoogle Scholar
Price, P.W. 1997. Insect ecology. New York: John Wiley and Sons, IncGoogle Scholar
Reid, R.W. 1958. Internal changes in the female mountain pine beetle, Dendroctonus monticolae Hopk., associated with egg laying and flight. The Canadian Entomologist 90: 464–8CrossRefGoogle Scholar
Reid, R.W. 1962. Biology of the mountain pine beetle, Dendroctonus monticolae Hopkins, in the East Kootenay region of British Columbia. II. Behaviour in the host, fecundity, and internal changes in the female. The Canadian Entomologist 94: 605–13CrossRefGoogle Scholar
Reynolds, K.M., Holsten, E.H. 1994. Relative importance of risk factors for spruce beetle outbreaks. Canadian Journal of Forest Research 24: 2089–95CrossRefGoogle Scholar
Safranyik, L., Linton, D.A. 1999. Spruce beetle (Coleoptera: Scolytidae) survival in stumps and windfall. The Canadian Entomologist 131: 107–13CrossRefGoogle Scholar
Safranyik, L., Simmons, C., Barclay, H.J. 1990. A conceptual model of spruce beetle population dynamics. Canadian Forestry Service Pacific Forest Research Centre Report BC–X–316Google Scholar
Sahota, T.S., Thomson, A.J. 1979. Temperature induced variation in the rates of reproductive processes in Dendroctonus rufipennis (Coleoptera: Scolytidae): a new approach to detecting changes in population quality. The Canadian Entomologist 111: 1069–78CrossRefGoogle Scholar
SAS Institute Inc. 1989. SAS/STAT user's guide. Version 6, 4th edition, volume 1. Cary, North Carolina: SAS Institute IncGoogle Scholar
Schmid, J.M., Beckwith, R.C. 1975. The spruce beetle. US Forest Service Forest Pest Leaflet 127Google Scholar
Six, D.L. 2003. Bark beetle–fungus symbioses. pp 99116in Bourtzis, K., Miller, T. (Eds), Insect symbioses. Boca Raton, Florida: CRC PressGoogle Scholar
Six, D.L., Paine, T.D. 1998. Effects of mycangial fungi and host tree species on progeny survival and emergence of Dendroctonus ponderosae (Coleoptera: Scolytidae). Environmental Entomologist 27: 1393–401CrossRefGoogle Scholar
Werner, R.A., Holsten, E.H. 1985. Factors influencing generation times of spruce beetles in Alaska. Canadian Journal of Forest Research 15: 438–43CrossRefGoogle Scholar
Zar, J.H. 1996. Biostatistical analysis. Upper Saddle River, New Jersey: Prentice-Hall, IncGoogle Scholar