Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T14:58:16.076Z Has data issue: false hasContentIssue false

COMPARATIVE PATHOGENICITY OF NOSEMA ACRIDOPHAGUS HENRY AND NOSEMA CUNEATUM HENRY (MICROSPORIA: NOSEMATIDAE) FOR MELANOPLUS SANGUINIPES (FAB.) (ORTHOPTERA: ACRIDIDAE)1

Published online by Cambridge University Press:  31 May 2012

M.A. Erlandson
Affiliation:
Agriculture Canada Research Station, 107 Science Crescent, Saskatoon, Saskatchewan, Canada S7N 0X2
M.K. Mukerji
Affiliation:
Agriculture Canada Research Station, 107 Science Crescent, Saskatoon, Saskatchewan, Canada S7N 0X2
Al B. Ewen
Affiliation:
Agriculture Canada Research Station, 107 Science Crescent, Saskatoon, Saskatchewan, Canada S7N 0X2
C. Gillott
Affiliation:
Agriculture Canada Research Station, 107 Science Crescent, Saskatoon, Saskatchewan, Canada S7N 0X2

Abstract

Nosema acridophagus Henry was shown to be more virulent than N. cuneatum Henry to 3rd-instar nymphs of Melanoplus sanguinipes (Fab.) following peroral inoculation with 1.0 × 106, 105, 104, or 103 spores/individual. The lethal time was dose dependent and significantly shorter and the lethal dose (LD50) was significantly lower in grasshoppers inoculated with N. acridophagus than for those inoculated with N. cuneatum. Grasshoppers inoculated with N. acridophagus died earlier and a smaller proportion survived to the adult stage compared with those inoculated with N. cuneatum. Nosema acridophagus was more infectious at the lower doses than was N. cuneatum; however, N. cuneatum reached an intensity of infection in host tissues which was 2–10 times higher. Both microsporidians appeared to have similar pathogenicity for both individually and group-reared M. sanguinipes.

Résumé

Nosema acridophagus Henry s'avère plus virulent que N. cuneatum Henry pour les nymphes de troisième stade de Melanoplus sanguinipes (Fab.) après inoculation pérorale avec 1,0 × 106, 105, 104 ou 103 spores/individu. Le temps léthal dépend de la dose et est significativement plus bref, et la dose léthale (DL50) est significativement plus faible pour les criquets inoculés avec N. acridophagus que pour ceux inoculés avec N. cuneatum. Les criquets inoculés avec N. acridophagus meurent plus tôt et une plus faible porportion survit jusqu'au stade adulte que ceux inoculés avec N. cuneatum. Nosema acridophagus s'avère plus infectieux aux faibles doses que N. cuneatum, mais celui-ci atteint une infectiosité dans les tissus de l'hôte 2 à 10 fois supérieure. Les microsporidies des deux espèces semblent avoir la même pathogénicité pour M. sanguinipes élevé individuellement ou en groupe.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. J. econ. Ent. 18: 265267.CrossRefGoogle Scholar
Canning, E.U. 1953. A new microsporidian Nosema locustae n. sp. from the fat body of the African migratory locust Locusta migratoria migratorioides (Reiche and Fairmaire), and its infectivity to other hosts. J. Insect Pathol. 4: 237247.Google Scholar
Ewen, Al B., and Mukerji, M.K.. 1980. Evaluation of Nosema locuatae (Microsporida) as a control agent of grasshopper populations in Saskatchewan. J. Invertebr. Pathol. 35: 295303.CrossRefGoogle Scholar
Finney, D.J. 1971. Probit analysis. University Press, Cambridge.Google Scholar
Gurr, E. 1956. A practical manual of medical and biological staining techniques, 2nd ed. Interscience Publishing Inc., New York.CrossRefGoogle Scholar
Henry, J.E. 1967. Nosema acridophagus, sp. n., a Microsporidan isolated from grasshoppers. J. Invertebr. Pathol. 9: 331341.CrossRefGoogle Scholar
Henry, J.E. 1969. Early morphogenesis of tumors induced by Nosema acridophagus in Melanoplus sanguinipes. J. Invertebr. Pathol. 15: 391394.Google Scholar
Henry, J.E. 1971 a. Experimental application of Nosema locustae for control of grasshoppers. J. Invertebr. Pathol. 18: 389394.CrossRefGoogle Scholar
Henry, J.E. 1971 b. Nosema cuneatum sp. n. (Microsporida: Nosematidae) in grasshoppers (Orthoptera: Acrididae). J. Invertebr. Pathol. 17: 164171.CrossRefGoogle Scholar
Henry, J.E. 1972. Epizootiology of infections by Nosema locustae Canning (Microsporida: Nosematidae) in grasshoppers. Acrida 1: 111120.Google Scholar
Henry, J.E., and Oma, E.A.. 1974 a. Effect of prolonged storage of spores on field applications of Nosema locustae (Microsporida: Nosematidae) against grasshoppers. J. Invertebr. Pathol. 23: 371377.CrossRefGoogle ScholarPubMed
Henry, J.E., and Oma, E.A.. 1974 b. Effects of infections by Nosema locustae Canning, Nosema acridophagus Henry, and Nosema cuneatum Henry (Microsporida: Nosematidae) in Melanoplus bivittatus (Say) (Orthoptera: Acrididae). Acrida 3: 223231.Google Scholar
Henry, J.E., Oma, E.A., Onsager, J.A., and Oldacre, S.W.. 1979. Infection of the corn earworm, Heliothis zea, with Nosema acridophagus and Nosema cuneatum from grasshoppers: Relative virulence and production of spores. J. Invertebr. Pathol. 34: 125132.CrossRefGoogle Scholar
Henry, J.E., Tiahrt, K., and Oma, E.A.. 1973. Importance of timing, spore concentrations, and levels of spore carrier in applications of Nosema locustae (Microsporida: Nosematidae) for control of grasshoppers. J. Invertebr. Pathol. 21: 263272.CrossRefGoogle Scholar
Lewis, L.C., and Lynch, R.E.. 1974. Lyophilization, vacuum drying, and subsequent storage of Nosema pyraustae spores. J. Invertebr. Pathol. 24: 149153.CrossRefGoogle Scholar
Pickford, R., and Randell, R.L.. 1969. A non-diapause strain of the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). Can. Ent. 101: 894896.CrossRefGoogle Scholar
Tanada, Y. 1976. Epizootiology and microbial control. pp. 247280in Bulla, L.A. Jr.,, and Cheng, T.C. (Eds.), Comparative pathobiology, Vol. I. Plenum Press, New York.Google Scholar
Undeen, A.H., and Alger, N.E.. 1975. The effect of the microsporidian, Nosema algerae, on Anopholes stephensi. J. Invertebr. Pathol. 25: 1924.CrossRefGoogle Scholar
Weiser, J. 1976. Microsporida in invertebrates: Host-parasite relations at the organism level. pp. 164201in Bulla, L.A. Jr.,, and Cheng, T.C. (Eds.), Comparative pathobiology, Vol. I. Plenum Press, New York.Google Scholar
Wilson, G.G. 1976. A method for mass producing spores of the Microsporidan Nosema fumiferanae in its host the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Ent. 108: 383386.CrossRefGoogle Scholar