Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T22:20:32.776Z Has data issue: false hasContentIssue false

The Circumstances of Species Replacement Among Parasitic Hymenoptera

Published online by Cambridge University Press:  31 May 2012

S. E. Flanders
Affiliation:
Department of Biological Control, University of California Citrus Research Center and Agricultural Experiment Station, Riverside

Abstract

Species replacement is most commonly observed among the parasitic Hymenoptera because of their dominance in biological control. Such replacement is necessarily a reproduction phenomenon involving interspecific competition in population-saturated areas. The competitive interactions of parasitic populations are differentiated into two types, “intrinsic” and “extrinsic”, with characteristic conditions and mechanisms.

Intrinsic competition consists of interference between individuals of the interacting populations, being manifested by such factors as cannibalism, mutilation, starvation, suffocation, production of toxic or repellent excretions and secretions, and the differential susceptibility of individual hosts to parasitic attack.

Extrinsic competition concerns the interaction of populations as groups and is manifested largely by host-habitat finding, host-finding, and host acceptance.

Replacement through intrinsic competition takes place regardless of host abundance; replacement by extrinsic competition is an effect of decreased host abundance.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartlett, B. R., and Ball, J. C.. 1964. The developmental biologies of two encyrtid parasites of Coccus hesperidum and their intrinsic competition. Ann. ent. Soc. Amer. 57: 493503.CrossRefGoogle Scholar
Compere, H. 1940. Parasites of the black scale, Saissetia oleae, in Africa. Hilgardia 13: 387425.CrossRefGoogle Scholar
Compere, H. 1957. Descriptions of species of Metaphycus recently introduced into California and some corrections. Boll. Lab. Ent. Agraria “Filippo Silvestri” Portici 15: 221230.Google Scholar
Compere, H. 1961. The red scale and its natural enemies. Hilgardia 31: 173278.Google Scholar
Compere, H., and Smith, H. S.. 1932. The control of the citrophilus mealybug Pseudococcus gahani by Australian parasites. Hilgardia 6: 585618.CrossRefGoogle Scholar
Compere, H., Flanders, S. E. and Smith, H. S.. 1941. Use air transport from China for the introduction into California of the red-scale inhabiting Comperiella. Calif. Citrograph 26: 291, 300301.Google Scholar
DeBach, P. 1954. Relative efficacy of the red scale parasite Aphytis chrysomphali (Mercet) and Aphytis “A” on citrus trees in southern California. Boll. Lab. Zool. Gen. Agr. 33: 134151.Google Scholar
DeBach, P. 1966. The competitive displacement and coexistence principles. A. Rev. Ent. 11: 183212.CrossRefGoogle Scholar
DeBach, P., and Sisojević, P.. 1960. Some effects of temperature and competition on the distribution and relative abundance of Aphytis lingnanensis and A. chrysomphali (Hymenoptera: Aphelinidae). Ecology 41: 153160.Google Scholar
DeBach, P., and Sundby, R. A.. 1963. Competitive displacement between ecological homologues. Hilgardia 34: 105166.Google Scholar
DeBach, P., Landi, J. and White, E. B.. 1962. Biological Control of California red scale. Calif. Citrograph 47: 453459; 48: 16–20.Google Scholar
Elton, C. 1927. Animal Ecology. The McMillan Company, New York. pp. viii and 207.Google Scholar
Flanders, S. E. 1940. Environmental resistance to the establishment of parasitic Hymenoptera. Ann. ent. Soc. Amer. 33: 245253.CrossRefGoogle Scholar
Flanders, S. E. 1947. Elements of host discovery as exemplified by the parasitic Hymenoptera. Ecology 28: 299309.CrossRefGoogle Scholar
Flanders, S. E. 1951. Mass culture of California red scale and its golden chalcid parasites. Hilgardia 21: 142.CrossRefGoogle Scholar
Flanders, S. E. 1958. Moranila californica as a usurped parasite of Saissetia oleae. J. econ. Ent. 51: 247248.CrossRefGoogle Scholar
Flanders, S. E. 1959. The biological control of the nigra scale, Saissetia nigra (Nietn.), in California. J. econ. Ent. 52: 596600.CrossRefGoogle Scholar
Flanders, S. E. 1961. Production uniformity in the commercial culture of entomophagous insects. J. econ. Ent. 54: 611612.CrossRefGoogle Scholar
Flanders, S. E. 1964 a. Some biological control aspects of taxonomy exemplified by the genus Aphytis (Hymenoptera: Aphelinidae). Can. Ent. 96: 888893.CrossRefGoogle Scholar
Flanders, S. E. 1964 b. Dual ontogeny of the male Coccophagous gurneyi Comp. (Hymenoptera: Aphelinidae), a phenotypic phenomenon. Nature 204: 944946.Google Scholar
Flanders, S. E. 1965. Competition and cooperation among parasitic Hymenoptera related to biological control. Can. Ent. 97: 409422.CrossRefGoogle Scholar
Flanders, S. E., and Badgley, M. E.. 1963. Prey-predator interaction in self balanced laboratory populations. Hilgardia 35: 145183.CrossRefGoogle Scholar
Flanders, S. E., and Gressitt, J. L.. 1958. The natural control of California red scale in China. Bull. Calif. State Dep. Agric. 49: 2333.Google Scholar
Flanders, S. E., and Hall, I. M.. 1965. Manipulated bacterial epizootics in Anagasta populations. J. Insect Path. 7: 368377.Google Scholar
Forbes, S. A. 1880. On some interactions of organisms. Bull. Ill. Nat. Hist. Surv. 1: 317.Google Scholar
Girault, A. A. 1911. On the identity of the most common species of the family Trichogrammatidae (Hymenoptera). Bull. Wis. nat. Hist. Soc. 9: 135165.Google Scholar
Haskins, C. P., and Haskins, E. F.. 1965. Pheidole megacephala and Iridomyrmex humilis in Bermuda — Equilibrium or slow development? Ecology 46: 736740.CrossRefGoogle Scholar
Howard, L. O. 1897. A study of insect parasitism. U.S. Dep. Agric. Tech. Ser. 5, 57 pp.Google Scholar
Muir, F. 1914. “Presidential Address.” Proc. Hawaiian ent. Soc. 3: 2842.Google Scholar
Nicholson, A. J. 1933. The balance of animal populations. J. Anim. Ecol. 2: 132178.CrossRefGoogle Scholar
Pemberton, C. E., and Willard, H. F.. 1918. Interrelation of fruit-fly parasites in Hawaii. J. agric. Res. 12: 285295.Google Scholar
Quayle, H. J. 1911. The black scale, Univ. Calif. Agric. Exp. Sta. Bull. 223. 49 pp.Google Scholar
Quednau, W. 1960. Über die identität der Trichogramma-Arton und einiger ihren Ökotypen (Hymenoptera, Chalcidoidea, Trichogrammatidae). Biolog. Bund-stalt Land. Forst. Inst. Zool. Berlin-Dahlem. 100: 1150.Google Scholar
Salt, G. 1937. The sense used by Trichogramma to distinguish between parasitized and unparasitized hosts. Proc. R. ent. Soc. Lond. (B) 122: 5775.Google Scholar
Smith, H. S. 1929 a. The utilization of entomophagous insects in the control of citrus pests. Trans. 4th int. Congr. Ent. (1928) 2: 191198.Google Scholar
Smith, H. S. 1929 b. Multiple parasitism, its relation to the biological control of insect pests. Bull. ent. Res. 20: 141149.CrossRefGoogle Scholar
Smith, H. S. 1929 c. On some phases of preventive entomology. Sci. Mon. 29: 177184.Google Scholar
Smith, H. S. 1933. The influence of civilizations on the insect fauna by purposeful introductions. Ann. ent. Soc. Amer. 26: 518552.Google Scholar
Smith, H. S. 1935. The role of biotic factors in the determination of population densities. J. econ. Ent. 28: 873898.Google Scholar
Smith, H. S. 1937. [Review] J. econ. Ent. 30: 218220.Google Scholar
Smith, H. S., and Compere, H.. 1928. A preliminary report on the insect parasites of the black scale, Saissetia oleae (Bern.). Univ. Calif. Publ. Ent. 4: 231334.Google Scholar
Smith, H. S., Essig, E. O., Fawcett, H. S., Peterson, G. M., Quayle, H. J., Smith, R. E. and Talley, H. R.. 1933. The efficacy and economic effects of plant quarantine in California. Univ. Calif. Agric. Exp. Sta. Bull. 553, 276 pp.Google Scholar
Smith, H. S., and Flanders, S. E.. 1949. Recent introductions of entomophagous insects into California. J. econ. Ent. 42: 995996.CrossRefGoogle Scholar
Smith, H. S., and Flanders, S. E.. 1950. The search for natural enemies of citrus pests. Calif. Citrograph 35: 362, 376.Google Scholar
Solomon, M. E. 1965. Rules governing the combined effects of successive mortalities. Proc. XIIth int. Cong. Ent. London (1964). pp. 399400.Google Scholar
Utida, S. 1961. Experimental studies on the interactions between the bean weevils and their parasitic wasps. XI int. Kongr. Ent. Wien (1960) 1: 731734.Google Scholar
van den Bosch, R., Bartlett, B. R. and Flanders, S. E.. 1955. A search for natural enemies of lecaniine scale insects in northern Africa for introduction into California. J. econ. Ent. 48: 5355.Google Scholar
Wheeler, W. M. 1911. Insect parasitism and its peculiarities. Pop. Sci. Mon. 79: 431449.Google Scholar
Williams, F. X. 1931. The insects and other invertebrates of Hawaiian sugar cane fields. Hawaiian Sugar Planters Assoc. Exp. Sta., Honolulu, 400 pp.Google Scholar