Introduction
Bees (Hymenoptera: Apoidea: Anthophila) are a monophyletic group within the hymenopteran superfamily Apoidea (Melo Reference Melo1999; Danforth et al. Reference Danforth, Fang and Sipes2006; Debevec et al. Reference Debevec, Cardinal and Danforth2012; Hedtke et al. Reference Hedtke, Patiny and Danforth2013; Branstetter et al. Reference Branstetter, Danforth, Pitts, Faircloth, Ward and Buffington2017). Seven families of bees are currently recognised (Michener Reference Michener2007), with six occurring in Canada: Andrenidae, Apidae, Colletidae, Halictidae, Megachilidae, and Melittidae. Some authors prefer to recognise a single bee family (Moure et al. Reference Moure, Urban and Melo2007), but this practice is not widely accepted. Globally, more than 20 500 bee species have been described (Ascher and Pickering Reference Ascher and Pickering2022), and more than 900 bee species have been documented in Canada (Sheffield et al. Reference Sheffield, Heron, Gibbs, Onuferko, Oram and Best2017; Sheffield Reference Sheffield2019). Bees in Canada are divided into 52 genera, although generic limits differ among authors (Mitchell Reference Mitchell1960, Reference Mitchell1962; Michener Reference Michener2007; Dorchin et al. Reference Dorchin, López-Uribe, Praz, Griswold and Danforth2018; Ascher and Pickering Reference Ascher and Pickering2022). Bees display a range of anatomical and behavioural adaptations that contribute to their biodiversity and aesthetic quality.
Most bees are solitary and live in underground burrows or pre-existing cavities (Krombein Reference Krombein1967; Cane et al. Reference Cane, Griswold and Parker2007; Michener Reference Michener2007; Cane and Neff Reference Cane and Neff2011; Danforth et al. Reference Danforth, Minckley and Neff2019). Less commonly, nests are excavated in wood and constructed externally on substrates or under rocks. Honey bees (Apis mellifera Linnaeus) and bumble bees (genus Bombus) are unusual for making wax structures in larger hollows in trees or, often the case among bumble bees, abandoned rodent burrows (Michener Reference Michener1974; Plowright and Laverty Reference Plowright and Laverty1984). Social behaviour in Apis and Bombus is well known, but it also commonly occurs in the Halictidae. Social behaviour in halictids is much more plastic and variable than in Apis or Bombus (Michener Reference Michener1974; Packer et al. Reference Packer, Jessome, Lockerbie and Sampson1989; Eickwort et al. Reference Eickwort, Eickwort, Gordon, Eickwort and Wcislo1996; Field Reference Field1996; Mueller Reference Mueller1996; Richards et al. Reference Richards, von Wettberg and Rutgers2003; Gibbs et al. Reference Gibbs, Brady, Kanda and Danforth2012b).
Bees are known for their close connection with flowers, which extends back to the early Cretaceous, approximately 123 Ma (Cardinal and Danforth Reference Cardinal and Danforth2013). Bees typically harvest pollen and nectar from flowers to provision their nests (Portman et al. Reference Portman, Orr and Griswold2019). Flowering plants can exploit this behaviour for pollination. Some bees are specialist floral visitors (oligoleges), using only a small subset of available plants (Robertson Reference Robertson1926; Wcislo and Cane Reference Wcislo and Cane1996; Cane and Sipes Reference Cane, Sipes, Waser and Ollerton2006). Polylectic bees use a wide range of flowers, a trait that may have aided the early diversification of bees (Murray et al. Reference Murray, Bossert and Danforth2018). Many bees – approximately 13% – do not collect pollen but act as brood parasites in other bee nests (Michener Reference Michener2007; Danforth et al. Reference Danforth, Minckley and Neff2019). This strategy has originated multiple times in bees (Smith et al. Reference Smith, Tierney, Park, Fuller and Schwarz2007; Cardinal et al. Reference Cardinal, Straka and Danforth2010; Gibbs et al. Reference Gibbs, Albert and Packer2012a; Litman et al. Reference Litman, Praz, Danforth, Griswold and Cardinal2013). In general, bees are considered among the most important animal pollinators (Kevan and Baker Reference Kevan and Baker1983; Ollerton et al. Reference Ollerton, Winfree and Tarrant2011).
Over the last two decades, there has been substantial interest in the status of pollinators (Allen-Wardell et al. Reference Allen-Wardell, Bernhardt, Bitner, Burquez, Buchmann and Cane1998; Kevan and Phillips Reference Kevan and Phillips2001; Marlin and LaBerge Reference Marlin and LaBerge2001; Biesmeijer et al. Reference Biesmeijer, Roberts, Reemer, Ohlemüller, Edwards and Peeters2006; Berenbaum et al. Reference Berenbaum, Bernhardt, Buchmann, Calderone, Goldstein and Inouye2007; Potts et al. Reference Potts, Biesmeijer, Kremen, Neumann, Schweiger and Kunin2010; Winfree Reference Winfree2010; Colla et al. Reference Colla, Ascher, Arduser, Cane, Deyrup and Droege2012; Bartomeus et al. Reference Bartomeus, Ascher, Gibbs, Danforth, Wagner, Hedtke and Winfree2013; Lebuhn et al. Reference Lebuhn, Droege, Connor, Gemmill-Herren, Potts and Minckley2013; Senapathi et al. Reference Senapathi, Carvalheiro, Biesmeijer, Dodson, Evans and McKerchar2015). With the possible exception of bumble bees (Cameron et al. Reference Cameron, Lozier, Strange, Koch, Cordes, Solter and Griswold2011; Kerr et al. Reference Kerr, Pindar, Galpern, Packer, Potts and Roberts2015), few wild bee taxa have been sufficiently well documented in North America to provide effective baseline data to reliably measure conservation status. Museum data can provide some insight into historical trends, but analysing these data can be challenging due to the inconsistent and usually unknown sampling methods applied over time (Bartomeus et al. Reference Bartomeus, Ascher, Gibbs, Danforth, Wagner, Hedtke and Winfree2013, Reference Bartomeus, Stavert, Ward and Aguado2019). Statistical modelling can provide predictions of how land-use changes may affect bees (Koh et al. Reference Koh, Lonsdorf, Williams, Brittain, Isaacs, Gibbs and Ricketts2016), but these are a poor replacement for empirical studies of actual bees. Several published and unpublished checklists have become available for states and provinces in recent years for North America (Donovall and VanEngelsdorp Reference Donovall and VanEngelsdorp2010; Jean Reference Jean2010; Scott et al. Reference Scott, Ascher, Griswold and Nufio2011; Canadian Endangered Species Conservation Council 2015; Dibble et al. Reference Dibble, Drummond, Stubbs, Veit and Ascher2017; Gibbs et al. Reference Gibbs, Ascher, Rightmyer and Isaacs2017; Kilpatrick et al. Reference Kilpatrick, Gibbs, Mikulas, Spichiger, Ostiguy, Biddinger and López-Uribe2020). A consistent trend that emerges in these studies is how limited basic inventories or checklists of bees are for most of the continent (Jamieson et al. Reference Jamieson, Carper, Wilson, Scott and Gibbs2019). Without these baseline data, efforts to monitor trends in bees are quixotic (Tepedino et al. Reference Tepedino, Durham, Cameron and Goodell2015).
Historical bee collection in Manitoba, Canada
Entomological research in Manitoba, Canada was strongly influenced by Norman Criddle (1875–1933). Criddle and his siblings were avid collectors and natural historians (Criddle Reference Criddle1975). The homestead near Treesbank on which he was raised, referred to on collection labels as Aweme, and now the Criddle/Vane Homestead Provincial Park, is an important historical site for entomology (Roughley Reference Roughley2000). Aweme as a locality may be a much broader area than just the Criddle homestead, based on the breadth of species, including habitat specialists, labelled with this location. In 1913, Criddle was employed by the Division of Entomology of the Canadian Dominion government’s Experimental Farms Branch (then a division of the Dominion of Canada’s Department of Agriculture; now under Agriculture and Agri-Food Canada) as an entomological field officer for Manitoba and, beginning in 1919, as an entomologist (Gibson and Crawford Reference Gibson and Crawford1933). Criddle began the first federal entomology lab at Aweme in 1915, which was the centre for early entomological research in the province. The Criddle home, known as St. Albans, was a meeting spot for Criddle’s friends and colleagues. Although Criddle’s professional work was focused on crop protection, particularly against grasshoppers, many of our earliest records of bees and many other insects for Manitoba stem from his collections (Gibson Reference Gibson1914, Reference Gibson1915, Reference Gibson1916, Reference Gibson1917; Gibson and Criddle Reference Gibson and Criddle1920), including specimens used in the description of new bees (Sladen Reference Sladen1916a).
Ralph Durham Bird (1901–1972), a native Manitoban, worked at Aweme under the direction of Criddle from 1924 to 1926. He left Manitoba for several years but returned in 1933 to head the Federal Entomology Laboratory following Criddle’s death (Bird Reference Bird1975). The laboratory at that time moved to Brandon, Manitoba. He came to reside in Winnipeg, Manitoba with the founding of the Dominion’s Department of Agriculture Research Station to head the entomology section and later its crop protection section. Bird’s research career, like Criddle’s, focused primarily on agricultural pests, but he collected several early bee records for the province.
John Braithwaite Wallis (1876–1962) was a friend and colleague of R.D. Bird and the Criddle family. Wallis’s interests were primarily in other insect orders: he wrote a monograph on tiger beetles (Wallis Reference Wallis1961). Wallis was hired by the Department of Entomology of the Manitoba Agricultural College to build an insect collection. In 1983, the collection was renamed the J.B. Wallis Museum of Entomology in his honour (Galloway et al. Reference Galloway, Holliday and White2010). The department itself was founded in about 1920 by Alvin Valentine Mitchener (1888–1962), who was the first entomologist at the University of Manitoba (then the Manitoba Agriculture College), where he worked until 1954. Mitchener’s work with bees was largely limited to honey bees, although his long-term data on pollen and nectar plants are of value to those interested in wild bees (Mitchener Reference Mitchener1948).
Bee collections in the province were largely haphazard in the first half of the 20th century. One exception is a study of the province’s bumble bees by Felix Neave (1901–1986), which recognised 23 species (Neave Reference Neave1933). Alexander Jardine Hunter (1868–1940) was a medical doctor and missionary in Teulon, Manitoba (Mitchell Reference Mitchell1940). His collections provide an early record of the Interlake fauna between Lake Manitoba and Lake Winnipeg. Interest in native pollinators began to emerge in the 1940s and 1950s out of the Field Crop Insect Laboratory in Brandon, based on specimen records and publications (Cole Reference Cole1955; Stephen Reference Stephen1955). Several scientists at Brandon collected bees at least occasionally, including R.D. Bird (above), Walter Askew (1929–2000), and Clifford Francis Barrett (1925–2017). William Procuronoff Stephen (1927–2016) and Thomas Victory Cole (1918–1999), of the Brandon lab, both conducted research on alfalfa pollination (Cole Reference Cole1955, Reference Cole1957; Stephen Reference Stephen1955; Bird Reference Bird1963). Stephen, although a native Manitoban, spent little of his professional career in the province, working at Brandon only from 1947 to 1952 before taking a position at Oregon State University, Corvallis, Oregon, United States of America (Bird Reference Bird1963). Nevertheless, his taxonomic revision of Colletes had a lasting impact on North American melittology and included numerous records from the province (Stephen Reference Stephen1954). His subsequent introduction of blue vane traps for bee collecting (Stephen and Rao Reference Stephen and Rao2005) has also changed the way collectors survey bees globally. Beginning in 1953, Cole led research on insect pollination of alfalfa at the field station in Wanless, Manitoba, which resulted in long series of bees, especially Bombus and Megachile. Cole studied leafcutters and created artificial nests for B. terricola Kirby (Cole Reference Cole1957; Bird Reference Bird1963). He also developed methods, which were decades ahead of their time, for habitat management to improve pollinators in areas adjacent to field crops (Cole Reference Cole1955). Pollinator research during this time also included a focus on sunflower crops, Helianthus annuus Linnaeus (Compositae) (Barrett Reference Barrett1955), which resulted in a series of Protandrena from Altona, Manitoba. In the 1950s, Arthur Robinson Brooks (1917–1962) and Leonard Alexander Kelton (born Konotopetz; 1923–2011) collected hundreds of bee records while surveying insects of the Prairie Provinces. Brooks had been a dipterist and Kelton focused on Hemiptera, but Brooks later undertook studies on numerous prairie insects (Riegert Reference Riegert1990; Henry and Gill Reference Henry and Gill2016). Even though neither researcher was a hymenopterist, Brooks collected the only known specimens of Holcopasites stevensi Crawford from the province. In 1961, Herbert Edward Milliron (1923–1981) made a significant collection of bumble bees from the province, many of which are deposited at the Canadian National Collection, Ottawa, Ontario, Canada. He subsequently published a series on the bumble bees of the Western Hemisphere (Milliron Reference Milliron1971, Reference Milliron1973a, Reference Milliron1973b). Most bee research in Manitoba focused on two managed exotic species – the European honey bee and the alfalfa leafcutter bee (Megachile rotundata Fabricius). Honey bee research in the Department of Entomology, University of Manitoba, was led during this time by Stanley Cameron Jay (Holliday and Currie Reference Holliday and Currie2009). One of his students, Robert Christopher Plowright, completed his doctorate on Bombus domestication and caste differentiation (Plowright Reference Plowright1966; Plowright and Jay Reference Plowright and Jay1966, Reference Plowright and Jay1968). Applied studies of pollinators, although valuable, have not always provided much information on the broader bee fauna of the province.
General collections of bees in Manitoba were few during the 1960s, but in 1977, the Department of Entomology, University of Manitoba, hired Terry D. Galloway. Although Galloway’s research was largely in veterinary entomology, he demonstrated a healthy interest in wild bees in the mid-1970s through the 1980s, based on more than 2000 specimen records. During the mid-1980s, William James Turnock (1929–2008) collected bees, although his research focus was on pest control. Turnock et al. (Reference Turnock, Kevan, Laverty and Dumouchel2006) published records of 15 bumble bee species captured inadvertently in baited traps for bertha armyworm, Mamestra configurata Walker (Noctuidae), in Manitoba canola fields. Also during this period, David Harvey Pengelly (1922–2004) was active in the province, primarily in the area of Erickson where he retired after a career as professor at the Ontario Agricultural College, University of Guelph (Guelph, Ontario, Canada; Marshall Reference Marshall2004). Pengelly’s interest was primarily in the genus Megachile, which was the basis of his doctoral studies at Cornell University (Ithaca, New York, United States of America; Pengelly Reference Pengelly1955). During his time, Pengelly inspired several young entomologists, including a future curator of the J.B. Wallis Museum of Entomology, Robert Edward Roughley (1950–2009). The museum expanded greatly during Roughley’s tenure as curator. Roughley was an expert in aquatic beetles, but he also studied the fauna of grassland insects and conducted surveys at Aweme. He participated in a nationwide project to study Canadian pollinators, CANPOLIN (Galloway et al. Reference Galloway, Holliday and White2010), which resulted in thousands of specimen records (Patenaude Reference Patenaude2007). In 2011, the museum was rededicated as the J.B. Wallis/R.E. Roughley Museum of Entomology.
Bee collecting in Manitoba in the 2000s
A large survey of prairie bees was undertaken by one of Roughley’s students, Andrea Patenaude. She collected extensively during her thesis work at Spruce Woods Provincial Park (Patenaude Reference Patenaude2007). Patenaude’s specimens were included in taxonomic studies of the genus Lasioglossum (Gibbs Reference Gibbs2010). During CANPOLIN, bees were collected at Canadian Airforces Base Shilo neighbouring Spruce Woods Provincial Park. Several of these bees were sequenced as part of an effort to DNA barcode Canadian bees (Sheffield et al. Reference Sheffield, Heron, Gibbs, Onuferko, Oram and Best2017). More recent theses on wild bees in grasslands were conducted by Sarah Semmler and Reid Miller in the Tall Grass Prairie Preserve (Semmler Reference Semmler2015; Miller Reference Miller2021), by Marika Olynyk in fragmented grasslands of southwestern Manitoba (Olynyk Reference Olynyk2017; Olynyk et al. Reference Olynyk, Westwood and Koper2021), and by Emily Hanuschuk across multiple landscape in southern Manitoba (Hanuschuk Reference Hanuschuk2021), resulting in more than 30 000 specimen records. These studies include novel records for the province, including the first provincial records of the genus Dianthidium (Semmler et al. Reference Semmler, Olynyk, Miller and Gibbs2018). Other surveys of wild bee diversity across multiple habitat types in southern Manitoba, including thesis research by Massimo Martini (Reference Martini2022), have contributed to the provincial records reported herein. In a survey of prairie bees in Canada, Sheffield et al. (Reference Sheffield, Frier, Dumesh, Giberson and Cárcamo2014) listed 218 species for the prairie region of Manitoba. A slightly larger list of 236 Manitoba bees was made available through a recent report on the status of species in Canada (Canadian Endangered Species Conservation Council 2015), and an online checklist of approximately 250 species was released by Sheffield (Reference Sheffield2019).
Relatively few of the studies on wild bees in Manitoba have resulted in peer-reviewed publications (but see Neave Reference Neave1933; Turnock et al. Reference Turnock, Kevan, Laverty and Dumouchel2006; Semmler et al. Reference Semmler, Olynyk, Miller and Gibbs2018; Robson et al. Reference Robson, Hamel, Neufeld and Bleho2019; Gibbs et al. Reference Gibbs, Hanuschuk and Shukla-Bergen2021; Olynyk et al. Reference Olynyk, Westwood and Koper2021). In 2017, research on wild bees at the University of Manitoba, Winnipeg, began in earnest, the results of which included the discovery of many new provincial records (Semmler et al. Reference Semmler, Olynyk, Miller and Gibbs2018; Gardner and Gibbs Reference Gardner and Gibbs2021; Onuferko et al. Reference Onuferko, Packer and Genaro2021; Satyshur et al. Reference Satyshur, Evans, Forsberg and Gibbs2021; Wrigley et al. Reference Wrigley, Westwood, Murray, Olynyk and de March2021). Among these were new national records and new species, as well as erroneous published records based on misidentified material. Hence, the purpose of the current study is to present these discoveries and provide a more accurate and complete checklist of the bees of Manitoba, which has changed considerably and is therefore warranted. This checklist is intended to stimulate renewed interest and support research on the Manitoba bee fauna and other areas of the Prairie Provinces and the north–central region of the United States of America. Due to the need for taxonomic revisions in several key bee groups (e.g., Nomada and Sphecodes), this checklist is necessarily preliminary.
Methods
This study is restricted to the geographic boundaries of the Province of Manitoba, Canada. Manitoba is situated between the provinces of Saskatchewan to the west and of Ontario to the east, the territory of Nunavut to the north, and the states of North Dakota and Minnesota, United States of America, to the south. The Manitoban climate has extreme seasonality, with temperatures in the south ranging from –40 °C to 38 °C between winter and summer. There are six broad ecozones (Smith et al. Reference Smith, Veldhuis, Mills, Eilers, Fraser and Lelyk1998). The Taiga Shield, Southern Arctic, and the Hudson Plains occur in the north. The town of Churchill occurs near the northern limit of the Hudson Plains. The middle latitudes of the province to the southeastern corner are of the Boreal Shield Ecozone. The Boreal Plains Ecozone occurs to the southwest of the Boreal Shield. The southwestern part of the province is largely Prairies Ecozone, significant portions of which have been converted to large-scale agriculture.
An initial checklist was compiled using taxonomic literature (Mitchell Reference Mitchell1935a, Reference Mitchell1935b; Sandhouse Reference Sandhouse1939; Stephen Reference Stephen1954; Hurd and Michener Reference Hurd and Michener1955; Timberlake Reference Timberlake1960; LaBerge Reference LaBerge1961, Reference LaBerge1967, Reference LaBerge1971, Reference LaBerge1973, Reference LaBerge1977, Reference LaBerge1980, Reference LaBerge1986, Reference LaBerge1987, Reference LaBerge1989; Ordway Reference Ordway1966; Ribble Reference Ribble1967, Reference Ribble1968; Shinn Reference Shinn1967; Milliron Reference Milliron1971, Reference Milliron1973a, Reference Milliron1973b; LaBerge and Ribble Reference LaBerge and Ribble1972, Reference LaBerge and Ribble1975; Daly Reference Daly1973; Donovan Reference Donovan1977; Bouseman and LaBerge Reference Bouseman and LaBerge1979; McGinley Reference McGinley1986, Reference McGinley2003; Broemeling Reference Broemeling1988; Rightmyer Reference Rightmyer2008; Gibbs Reference Gibbs2010, Reference Gibbs2011; Rightmyer et al. Reference Rightmyer, Griswold and Arduser2010; Sheffield et al. Reference Sheffield, Ratti, Packer and Griswold2011; Gibbs et al. Reference Gibbs, Packer, Dumesh and Danforth2013, Reference Gibbs, Ascher, Rightmyer and Isaacs2017; Williams et al. Reference Williams, Thorp, Richardson and Colla2014; Onuferko Reference Onuferko2017, Reference Onuferko2018) and ecological studies (Cole Reference Cole1955, Reference Cole1957; Stephen Reference Stephen1955; Plowright Reference Plowright1966; Patenaude Reference Patenaude2007; Olynyk Reference Olynyk2017; Robson et al. Reference Robson, Hamel, Neufeld and Bleho2019). Published records were confirmed, where possible, by examining material in relevant collections, particularly the J.B. Wallis/R.E. Roughley Museum of Entomology and the Canadian National Collection of Insects, Arachnids, and Nematodes (records digitised at https://www.cnc.agr.gc.ca/taxonomy/TaxonMain.php). The historical bee collections at the J.B. Wallis/R.E. Roughley Museum were re-examined and databased to be deposited on Canadensys (https://www.canadensys.net) and the University of Manitoba Dataverse (https://doi.org/10.34990/FK2/55PV3G). Material was examined from the Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, the Canadian Museum of Nature, and the Illinois Natural History Survey, Prairie Research Institute, Champaign, Illinois, United States of America. Additional records come from other well-digitised collections, such as the American Museum of Natural History, New York, New York, United States of America. New collections were made as part of ongoing research projects and to fill gaps in our knowledge of Manitoban bees. These included records from student thesis projects (Emily Hanuschuk, Reid Miller, and Massimo Martini) and samples from the Manitoba Conservation Data Centre, Winnipeg, Manitoba. Some effort was made to collect potential species with specialised floral associations that were known from neighbouring jurisdictions. For example, specialist bees of Amorpha (Fabaceae) are known to occur in Minnesota, so targeted collection from this host plant took place. We also checked iNaturalist (www.iNaturalist.org) and Bumble Bee Watch (www.bumblebeewatch.org) and provide the unique code for observations supporting new records for the province.
Classification largely follows Michener (Reference Michener2007), except that we recognise subfamilies of Apidae supported by recent phylogenetic studies (Cardinal et al. Reference Cardinal, Straka and Danforth2010; Bossert et al. Reference Bossert, Murray, Almeida, Brady, Blaimer and Danforth2019), and subgenera of Andrena and Lasioglossum follow recent studies (Gibbs et al. Reference Gibbs, Brady, Kanda and Danforth2012b, Reference Gibbs, Packer, Dumesh and Danforth2013; Pisanty et al. Reference Pisanty, Richter, Martin, Dettman and Cardinal2022). Michener (Reference Michener2000, Reference Michener2007) recognised Pterosarus and Heterosarus as subgenera of Protandrena, but they have also been treated as subgenera or synonyms of Pseudopanurgus (Timberlake Reference Timberlake1967; Ascher Reference Ascher2004; Ascher and Pickering Reference Ascher and Pickering2020). Phylogenetic studies seem to suggest that a broadly defined Pseudopanurgus is paraphyletic (Bossert et al. Reference Bossert, Wood, Patiny, Michez, Almeida and Minckley2021; Ramos et al. Reference Ramos, Martins and Melo2022). No Pseudopanurgus sensu stricto occur in Manitoba, but we implicitly use Protandrena as an umbrella genus for all North American Protandrenini. The following literature was used to identify specimens and determine taxon concepts: Andrena Fabricius: Mitchell (Reference Mitchell1960); LaBerge (Reference LaBerge1967, Reference LaBerge1969, Reference LaBerge1973, Reference LaBerge1977, Reference LaBerge1980, Reference LaBerge1986, Reference LaBerge1989); Ribble (Reference Ribble1967, Reference Ribble1968, Reference Ribble1974); LaBerge and Bouseman (Reference LaBerge and Bouseman1970); LaBerge and Ribble (Reference LaBerge and Ribble1972, Reference LaBerge and Ribble1975); Bouseman and LaBerge (Reference Bouseman and LaBerge1979); Calliopsis Smith: Rozen (Reference Rozen1958); Mitchell (Reference Mitchell1960); Shinn (Reference Shinn1967); Perdita Smith: Timberlake (Reference Timberlake1954, Reference Timberlake1958, Reference Timberlake1960, Reference Timberlake1968); Mitchell (Reference Mitchell1960); Protandrena Cockerell: Mitchell (Reference Mitchell1960); Timberlake (Reference Timberlake1967, Reference Timberlake1973, Reference Timberlake1975); Scott et al. (Reference Scott, Ascher, Griswold and Nufio2011); Bombus Latreille: Milliron (Reference Milliron1971, Reference Milliron1973a, Reference Milliron1973b); Laverty and Harder (Reference Laverty and Harder1988); Williams et al. (Reference Williams, Cameron, Hines, Cederberg and Rasmont2008, Reference Williams, Thorp, Richardson and Colla2014, Reference Williams, Berezin, Cannings, Cederberg, Ødegaard and Rasmussen2019); Ghisbain et al. (Reference Ghisbain, Lozier, Rahman, Ezray, Tian and Ulmer2020); Brachymelecta Linsley: Hurd and Linsley (Reference Hurd and Linsley1951); Mitchell (Reference Mitchell1962); Onuferko et al. (Reference Onuferko, Packer and Genaro2021); Diadasia Patton: Timberlake (Reference Timberlake1941); Adlakha (Reference Adlakha1969); Snelling (Reference Snelling1994); Eucera : Timberlake (Reference Timberlake1969); Melissodes Latreille: LaBerge (Reference LaBerge1956a, Reference LaBerge1956b, Reference LaBerge1961); Mitchell (Reference Mitchell1962); Holcopasites Ashmead: Hurd and Linsley (Reference Hurd and Linsley1972); Epeolus Latreille: Brumley (Reference Brumley1965); Onuferko (Reference Onuferko2017, Reference Onuferko2018); Triepeolus Robertson: Rightmyer (Reference Rightmyer2008); Neolarra Ashmead: Michener (Reference Michener1939a); Shanks (Reference Shanks1977); Nomada Scopoli: Cockerell (Reference Cockerell1903, Reference Cockerell1905a, Reference Cockerell1905b, Reference Cockerell1908); Mitchell (Reference Mitchell1962); Broemeling (Reference Broemeling1988); Broemeling and Moalif (Reference Broemeling and Moalif1988); Alexander and Schwarz (Reference Alexander and Schwarz1994); Schwarz and Gusenleitner (Reference Schwarz and Gusenleitner2004); Droege et al. (Reference Droege, Rightmyer, Sheffield and Brady2010); Epeoloides Giraud: Mitchell (Reference Mitchell1962); Packer et al. (Reference Packer, Genaro and Sheffield2007); Ceratina Latreille: Mitchell (Reference Mitchell1962); Daly (Reference Daly1973); Rehan and Richards (Reference Rehan and Richards2008); Rehan and Sheffield (Reference Rehan and Sheffield2011); Colletes Latreille: Stephen (Reference Stephen1954); Mitchell (Reference Mitchell1960); Hylaeus Fabricius: Mitchell (Reference Mitchell1960); Snelling (Reference Snelling1966, Reference Snelling1968, Reference Snelling1970); Oram (Reference Oram2018); Augochlorella Sandhouse: Mitchell (Reference Mitchell1960); Ordway (Reference Ordway1966); Coelho (Reference Coelho2004); Lasioglossum Curtis: McGinley (Reference McGinley1986, Reference McGinley2003); Gibbs (Reference Gibbs2010, Reference Gibbs2011); Gibbs et al. (Reference Gibbs, Packer, Dumesh and Danforth2013); Sphecodes Latreille: Mitchell (Reference Mitchell1960); M. Arduser (unpublished data); Dufourea Lepeletier: Dumesh and Sheffield (Reference Dumesh and Sheffield2012); Gibbs et al. (Reference Gibbs, Dumesh and Griswold2014); Anthidium Fabricius: Gonzalez and Griswold (Reference Gonzalez and Griswold2013); Dianthidium Cockerell: Mitchell (Reference Mitchell1962); Grigarick and Stange (Reference Grigarick and Stange1968); Stelis Panzer: Cockerell (Reference Cockerell1898); Sladen (Reference Sladen1916b); Popov (Reference Popov1938); Mitchell (Reference Mitchell1962); Coelioxys Latreille: Mitchell (Reference Mitchell1962, Reference Mitchell1980); Baker (Reference Baker1975); de Silva (Reference de Silva2012); da Rocha Filho and Packer (Reference da Rocha Filho and Packer2016); Megachile Latreille: Mitchell (Reference Mitchell1934, Reference Mitchell1935a, Reference Mitchell1935b, Reference Mitchell1936, Reference Mitchell1937a, Reference Mitchell1937b, Reference Mitchell1962); Parker (Reference Parker1978); Sheffield et al. (Reference Sheffield, Ratti, Packer and Griswold2011); Byzdk (Reference Byzdk2012); Ashmeadiella Cockerell: Michener (Reference Michener1939b); Hurd and Michener (Reference Hurd and Michener1955); Mitchell (Reference Mitchell1962); Rowe (Reference Rowe2017); Hoplitis Klug: Michener (Reference Michener1947); Mitchell (Reference Mitchell1962); Rowe (Reference Rowe2017); Osmia Panzer: Sandhouse (Reference Sandhouse1939); White (Reference White1952); Mitchell (Reference Mitchell1962); Rightmyer et al. (Reference Rightmyer, Griswold and Arduser2010); and Macropis Panzer: Mitchell (Reference Mitchell1960); Michez and Patiny (Reference Michez and Patiny2005). Some identifications were confirmed by colleagues with expertise in the relevant taxon. Zach Portman, University of Minnesota, confirmed the identification of Perdita fallax Cockerell from photographs. Karen Wright, Texas A&M University, College Station, Texas, United States of America, identified a synoptic set of Melissodes for Manitoba, which improved our taxon concepts. Terry Griswold, United States Department of Agriculture, Agriculture Research Service, verified and corrected identifications of a synoptic set of Stelis.
The checklist (Table 1) is ordered alphabetically by family, subfamily, tribe, genus, subgenus (where applicable), and species. Some species are flagged as provisional when plausible literature records could not be confirmed by examining voucher specimens or uncertain if the identification is doubtful. Material examined is provided for new Canadian and Manitoban records in Supplementary material S1. In some cases, “new” records are difficult to define because specimens may be recorded outside of the traditional scientific literature, either in theses (Patenaude Reference Patenaude2007; Semmler Reference Semmler2015; Olynyk Reference Olynyk2017) or within online databases. In addition, the collaborative nature of our research has meant that some bees first identified as part of this study, including new generic records for the province and new Canadian records, were released early to benefit other studies (Gardner and Gibbs Reference Gardner and Gibbs2021; Onuferko et al. Reference Onuferko, Packer and Genaro2021; Satyshur et al. Reference Satyshur, Evans, Forsberg and Gibbs2021; Wrigley et al. Reference Wrigley, Westwood, Murray, Olynyk and de March2021) or were being worked on simultaneously as part of graduate theses (Hanuschuk Reference Hanuschuk2021; Miller Reference Miller2021; Martini Reference Martini2022). Our goal is to provide accessible, verifiable data for interesting records, even if there may be an earlier record outside of peer-reviewed publications. For this reason, we list as new records any species recorded during our research since the recent publication of a checklist of Canadian bees (Canadian Endangered Species Conservation Council 2015) but acknowledge their occurrence in other data sources. When many distinct collection events exist for a new species, only municipalities are provided, followed by the number of examined specimens. Intertegular spans (Cane Reference Cane1987) for common species in southern Manitoba are provided for reference (Supplementary material S2). Measurements were taken using an ocular micrometer or a microscope-mounted camera and calculated using NIS-Elements (Nikon Instruments Inc., Melville, New York, United States of America). Historical records were georeferenced using online gazetteers and Google Earth (https://earth.google.com). The following abbreviations are used below in material examined sections: CFB, Canadian Forces Base; PF, provincial forest; PP, provincial park; and WMA, wildlife management area. The abbreviations for collections referred to below are as follows: AAFC, Brandon Research and Development Centre, Agriculture and Agri-Food Canada; AMNH, American Museum of Natural History; CMNC, Canadian Museum of Nature; CNC, Canadian National Collection of Insects, Arachnids, and Nematodes; INHS, Illinois Natural History Survey; MCDC, Manitoba Conservation Data Centre; and WRME, J.B. Wallis/R.E. Roughley Museum of Entomology.
Results
We documented 392 species for Manitoba (Table 1), based on examination of more than 67 000 specimens. We found 154 new records for the province since 2015. Brachymelecta, Eucera, Neolarra, Triepeolus, Ashmeadiella, and Dianthidium represent new generic records for Manitoba during this time. Thirteen species are newly recorded for Canada: Calliopsis (Nomadopsis) australior Cockerell, 1897; Perdita (Perdita) tridentata Stevens, 1919; Brachymelecta interrupta (Cresson, 1872); Diadasia (Dasiapis) ochracea (Cockerell, 1903); Melissodes bidentis Cockerell, 1914; Nomada crawfordi crawfordi Cockerell, 1905; Nomada fuscicincta Swenk, 1915; Nomada sphaerogaster Cockerell, 1903; Nomada xantholepis Cockerell, 1911; Triepeolus cf. grindeliae Cockerell; Coelioxys (Xerocoelioxys) nodis Baker, 1972; Dianthidium (Dianthidium) parvum (Cresson, 1878); and Megachile (Megachiloides) dakotensis Mitchell, 1926. We propose that Nomada alpha paralpha Cockerell, 1921 and N. alpha dialpha Cockerell, 1921 are junior synonyms of N. alpha Cockerell, 1905, based on the type localities all being within a small geographical area (Supplementary material S1). Nomada arenicola Swenk, 1912 is considered a junior synonym of N. fervida Smith, 1854, due to a lack of morphological or genetic separation (Supplementary material S1). Protandrena albertensis (Cockerell, 1937) and Neolarra mallochi Michener, 1939 are recognised as valid species (Supplementary material S1). Supporting information for new and interesting records is provided in Supplementary material S1.
ANDRENIDAE
We document 74 andrenid bees in Manitoba, based on more than 4000 specimens, including 54 species of Andrena, three of Calliopsis, nine of Perdita, and eight of Protandrena for the province. Perdita swenki Crawford was by far the most common species, with over 1400 records, which were mostly collected in pan traps. Four species – Andrena peckhami Cockerell, Andrena robervalensis Mitchell, Perdita octomaculata (Say), and Protandrena rudbeckiae (Robertson) – are provisional records included solely based on unconfirmed literature accounts. Approximately half of the Andrena species (25) are oligolectic, and most of the panurgines are oligoleges.
APIDAE
We document 113 apid species, based on more than 23 000 records, including four species of Anthophora, Apis mellifera, 29 of Bombus, two of Brachymelecta, three of Ceratina, three of Diadasia, Epeoloides pilosulus (Cresson), seven of Epeolus, three of Eucera, three of Holcopasites, 18 of Melissodes, two of Neolarra, 29 of Nomada, and eight of Triepeolus for the province. Four apid genera were newly recorded for the province during this work: Eucera, Triepeolus (see also Wrigley et al. Reference Wrigley, Westwood, Murray, Olynyk and de March2021), Brachymelecta (see also Onuferko et al. Reference Onuferko, Packer and Genaro2021), and Neolarra. Many new records come from the cleptoparasitic subfamily Nomadinae, including Holcopasites calliopsidis (Linsley), H. heliopsis (Robertson), Neolarra vigilans Cockerell, and N. mallochi, as well as 19 species of Nomada and eight of Triepeolus. The number of Nomada species remains uncertain until the genus can be revised. Eucerinae is also well represented by new records, including Eucera and six species of Melissodes.
COLLETIDAE
We document 33 colletid species, based on more than 2500 specimens, including 18 species of Colletes and 15 of Hylaeus for the province. Three-quarters of the Colletes are oligolectic (14 of 18). Colletes albescens Cresson is excluded from our verified list (see section on excluded bees in Supplementary material S1). Colletes petalostemonis was not re-examined and is based on a literature record (Sheffield et al. Reference Sheffield, Frier, Dumesh, Giberson and Cárcamo2014). New records of Hylaeus include species that are typically quite rare and not commonly recorded in Canada.
HALICTIDAE
We document 95 halictid species based on approximately 30 000 records, including four species of Agapostemon, Augochlorella aurata (Smith), Dieunomia heteropoda (Say)¸ three species of Dufourea, five of Halictus, 62 of Lasioglossum, and 19 of Sphecodes for the province. Many new records are provided for Lasioglossum and Sphecodes. The latter is entirely composed of brood parasites. Two brood parasitic Lasioglossum are recorded, the first documented for the province. Several additional Lasioglossum are reported as new. Sphecodes needs revision; therefore, many individuals are identified tentatively. Lasioglossum have been revised for the region, but the viridatum group remains a challenge. Among the halictids, the only oligoleges are Dieunomia heteropoda, L. aberrans (Crawford), L. lusorium (Cresson), L. nelumbonis (Robertson), and the three Dufourea.
MEGACHILIDAE
We document 76 megachild species based on more than 6000 records, including three species of Anthidium, Ashmeadiella bucconis (Say), nine species of Coelioxys, three of Dianthidium, two of Heriades, six of Hoplitis, 20 of Megachile, 24 of Osmia, and eight of Stelis for the province. The genus Ashmeadiella is newly recorded for the province. Dianthidium parvum is a new Canadian record. These new records include one exotic species, Anthidium manicatum Linnaeus. Both the nominal subspecies of Osmia lignaria and the subspecies O. lignaria propinqua are recorded for the province. The latter has been introduced by commercial retailers of Osmia.
MELITTIDAE
We record one species, Macropis nuda (Provancher), based on 85 specimens (Gibbs et al. Reference Gibbs, Hanuschuk and Shukla-Bergen2021). Although M. ciliata Patton has appeared on some lists for the province, this was apparently based on a misidentified specimen of M. nuda at the Illinois Natural History Survey. Examination of the Illinois Natural History Survey specimen revealed it to have the dark basitibial hairs and sculptured metapostnotum typical of M. nuda. The original determination label also reads M. nuda.
Discussion
Our study documents a 64.7% increase in the known species richness since 2015 and a 15.6% increase in the known generic richness of bees in Manitoba. The notable increase is the result of recent intensive sampling of a historically undersampled region for bees and examination of large numbers of specimens (including previously unidentified material) from museum collections. In comparison, Sheffield and Heron’s (Reference Sheffield and Heron2019) recent checklist of the bees of British Columbia, which has been better sampled historically for bees, documented only an 8.3% increase in the known species richness for that province, bringing the total number to 483 species. That Manitoba should contain upwards of 40% of the species of bees known to occur in Canada can be explained by its geographic position at the longitudinal centre of Canada and as the transition from eastern forests into western prairie. Manitoba thus marks the easternmost range for multiple western species and the westernmost range for multiple eastern species.
The disparate habitats and floral communities present in Manitoba, from boreal forests to prairies, provide for a more diverse bee fauna than was previously realised. Habitat conditions may affect proportions of different plant syndromes and the prevalence of associated pollinators (Robson et al. Reference Robson, Hamel, Neufeld and Bleho2019). Earlier checklists documented fewer than 250 species (Sheffield et al. Reference Sheffield, Frier, Dumesh, Giberson and Cárcamo2014; Canadian Endangered Species Conservation Council 2015); however, we record 392 bee species in the province. We would like to draw attention to three areas that are of particular interest for future studies. First, we found records of many eastern species that had previously gone undetected. It is likely that additional studies in the southeastern corner of Manitoba, which has not been thoroughly sampled, will reveal more records of eastern bees. Recent records of the endangered Epeoloides pilosulus have been found in this region (Gibbs et al. Reference Gibbs, Hanuschuk and Shukla-Bergen2021). Second, most of the province is comprised of northern ecoregions, where the bee fauna differs substantially from that in the south (Sheffield et al. Reference Sheffield, Frier, Dumesh, Giberson and Cárcamo2014; Williams et al. Reference Williams, Thorp, Richardson and Colla2014). Some records are available from Churchill; however, an enormous area in Manitoba is undersampled. It is critical that we obtain a better understanding of this northern fauna because climate change is likely to have a disproportionate effect on these cold-adapted bees (Kerr et al. Reference Kerr, Pindar, Galpern, Packer, Potts and Roberts2015). Finally, the area around Spruce Woods Provincial Park and Canadian Forces Base Shilo provides diverse habitat for bees and other species (Wrigley Reference Wrigley1974; Acorn Reference Acorn and Floate2011). Even though this has been a popular collecting site for many years, new records and even new species (Onuferko Reference Onuferko2018) have been found here in recent years. In some cases, these records are widely separated from the species’ nearest known records; for example, the nearest record of Diadasia ochracea is in Colorado (Adlakha Reference Adlakha1969; Snelling Reference Snelling1994). More studies of this region and the areas to the southwest are likely to reveal more interesting taxa. Conservation of this area is critical to the province’s biodiversity. The famous “Spirit Sands” in Spruce Woods Provincial Park are contracting as vegetation encroaches, leading to less area of open sand (Hugenholtz et al. Reference Hugenholtz, Bender and Wolfe2010). It is unclear how this may affect dune-adapted species, such as Megachile dakotensis and Nomada fervida, but it would be prudent to study this aspect to allow for best management practices.
An important caveat to our study is the limited taxonomic knowledge of some of the most diverse bee lineages. In particular, Nomada, Osmia, Sphecodes, and Stelis have never been revised for species occurring in this area (Michener Reference Michener2007). For these taxa, Mitchell’s (Reference Mitchell1960, Reference Mitchell1962) works include some of the best keys to species, despite numerous taxonomic updates (Schwarz and Gusenleitner Reference Schwarz and Gusenleitner2004; Droege et al. Reference Droege, Rightmyer, Sheffield and Brady2010; Rightmyer et al. Reference Rightmyer, Griswold and Arduser2010, Reference Rightmyer, Deyrup, Ascher and Griswold2011; Gibbs et al. Reference Gibbs, Ascher, Rightmyer and Isaacs2017). Although Manitoba has many elements of eastern fauna, there are also substantial numbers of species from the Great Plains and further west that are not treated in modern taxonomic studies. Other taxa, such as Lasioglossum and Melissodes, remain a challenge even with available taxonomic revisions (LaBerge Reference LaBerge1961; Gibbs Reference Gibbs2010). We expect that, in addition to new records being found with additional sampling, some of our determinations will also require updates as the taxonomic understanding of bees in this region improves. We hope that highlighting the diversity of the Manitoba bee fauna and the uncertainty in some taxa will encourage additional taxonomic studies in these groups.
Supplementary material
To view supplementary material for this article, please visit https://doi.org/10.4039/tce.2022.45.
Acknowledgements
We thank Jason Kelly, Government of Manitoba, for facilitating issuance of collecting permits for provincial parks (PP-PHQ-17-011, PP-PHQ-18-013, PP-PHQ-19-002, and PP-PHQ-19-004) and Sherry Punak-Murphy for logistical support in sampling at Canadian Forces Base Shilo. Karen Wright, Texas A&M University, identified a set of Melissodes that aided in taxon concepts and improved our subsequent identifications. Terry Griswold, United States Department of Agriculture, and Zach Portman, University of Minnesota, provided identifications and discussed taxon concepts. José L. Fernández-Triana, Canadian National Collection, arranged loans of specimens. Chris Friesen and the Manitoba Conservation Data Centre provided logistical and financial support for bee surveys. We thank Sam Droege, United States Geological Survey, and an anonymous reviewer for their supportive comments. The Nature Conservancy of Canada permitted surveys at the Tall Grass Prairie Preserve. T.O. was supported by a Beaty Postdoctoral Fellowship for Species Discovery awarded by the Canadian Museum of Nature, made possible through funds generously provided by the Ross Beaty family. E.J.H. was supported by Agriculture and Agri-Food Canada project 2383 – Pollination Services: Landscape Deficits (principal investigator: M. Dubois). R.M. and M.M. were supported by University of Manitoba Graduate Fellowships. P.N. was supported by the Dr. J.A. Garland Summer Research Award and a National Sciences and Engineering Research Council of Canada – Undergraduate Student Research Award. Funding for J.G. came from the University of Manitoba, National Sciences and Engineering Research Council of Canada Discovery Grant RGPIN-2018-05353 (principal investigator: J.G.), United States Department of Agriculture National Institute of Food and Agriculture award 2017-68004-26323 (principal investigator: R. Isaacs), and the Province of Manitoba’s Habitat Heritage Corporation and Critical Wildlife Habitat Program.