Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T08:21:22.010Z Has data issue: false hasContentIssue false

Changes in the bee fauna (Hymenoptera: Apoidea) of an old field site in southern Ontario, revisited after 34 years

Published online by Cambridge University Press:  02 April 2012

Jennifer C. Grixti
Affiliation:
Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
Laurence Packer*
Affiliation:
Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
*
2 Corresponding author (e-mail: [email protected]).

Abstract

We investigated changes in a wild bee community by repeating a detailed historical study of bee biodiversity in Ontario. In 1968 and 1969 (period 1), an inventory of bee species was taken from an old field habitat in southern Ontario. We resampled the bee fauna in 2002 and 2003 (period 2), following the same methods. Bee species richness, diversity, and evenness were significantly greater in period 2, and this was observed in all functional guilds except wood-nesting, pollen specialist, and nonnative bees. In period 2, a total of 150 bee species were found (2002, 98 species; 2003, 143 species), whereas in period 1, a total of 105 species were found (1968, 98 species; 1969, 76 species). Although 90 bee species collected in period 1 were re-collected in period 2, bee community composition was remarkably different between periods, with an estimated community similarity of only 7.5%. Changes in the bee fauna, specifically the increase in the proportions of pollen specialist and wood-nesting bees, might be best explained by changes in the habitat as a result of succession over the intervening 34 years. We compare and contrast our findings of bee community change with the published literature and discuss the possible factors driving the change.

Résumé

Nous avons étudié les changements dans une communauté d'abeilles sauvages en répétant une étude détaillée de la biodiversité des abeilles réalisée en Ontario dans le passé. En 1968 et 1969 (période 1), un inventaire a été fait des espèces d'abeilles dans un habitat de champ abandonné dans le sud de l'Ontario. Nous avons refait l'inventaire de la faune d'abeilles en 2002 et 2003 (période 2) en utilisant la même méthodologie. La richesse spécifique, la diversité et l'équitabilité des abeilles étaient toutes significativement plus élevées dans la période 2 et cela dans toutes les guildes fonctionnelles, à l'exception des espèces qui nichent dans le bois, des spécialistes du pollen et des abeilles non indigènes. Un total de 150 espèces d'abeilles a été récolté (98 espèces en 2002 et 143 espèces en 2003) durant la période 2 et de 105 espèces (98 espèces en 1968 et 76 espèces en 1969) durant la période 1. Bien que 90 espèces de la période 1 aient été retrouvées durant la période 2, la composition de la communauté d'abeilles avait changé de façon remarquable d'une période à l'autre avec une similarité des communautés estimée à seulement 7,5 %. Les changements dans la faune des abeilles, en particulier dans la proportion de spécialistes individuels de pollen et d'abeilles nichant dans le bois, s'expliquent probablement le mieux par les changements de l'habitat résultant de la succession écologique au cours de ces 34 années intermédiaires. Nous comparons nos résultats sur la modification de la communauté d'abeilles avec les résultats de la littérature scientifique et nous discutons des facteurs possibles responsables du changement.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen-Wardell, G., Bernhardt, P., Bitner, R., Burquez, A., Buchmann, S.L., Cane, J.H., Cox, P., Dalton, P., Feinsinger, P., Ingram, M., Inouye, D., Jones, C., Kennedy, K., Kevan, P.G., Koopowitz, H., Medellin, R., Medellin-Morales, S., Nabhan, G.P., Pavlik, B., Tepedino, V., Torchio, P., and Walker, S. 1998. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conservation Biology, 12: 817.Google Scholar
Argus, G.W. 1992. The phytogeography of rare vascular plants in Ontario and its bearing on plant conservation. Canadian Journal of Botany, 70: 469490.CrossRefGoogle Scholar
Banaszak, J. 1992. Strategy for conservation of wild bees in an agricultural landscape. Agriculture, Ecosystems and Environment, 40: 179192.CrossRefGoogle Scholar
Banaszak, J. 1995. Changes in fauna of wild bees in Europe. Pedagogical University, Bydgoszcz, Poland.Google Scholar
Banaszak, J., Cierzniak, T., and Ratynska, H. 2003. Local changes in populations of wild bees (Hymenoptera: Apoidea): 20 years later. Polish Journal of Entomology, 72: 261282.Google Scholar
Brown, V.K., and Southwood, T.R.E. 1987. Secondary succession: patterns and strategies. In Colonization, succession and stability. Edited by Gray, A.J., Crawley, M.J., and Edwards, D.J.. Blackwell, Oxford. pp. 315337.Google Scholar
Buchmann, S.L., and Nabhan, G.P. 1996. The forgotten pollinators. Island Press, Washington, D.C.Google Scholar
Cane, J.H. 2003. Exotic nonsocial bees (Hymenoptera: Apiformes) in North America: ecological implications. In For nonnative crops, whence pollinators of the future? Edited by Strickler, K. and Cane, J.H.. Entomological Society of America & Thomas Say Publications in Entomology, Lanham, Maryland. pp. 113126.Google Scholar
Condit, R., Pitman, N., Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B., Nunez, V.P., Aguilar, S., Valencia, R., Villa, G., Muller, L., Helene, C., and Losos, E. 2003. Beta-diversity in tropical forest trees. Science (Washington, D.C.), 295: 666669.CrossRefGoogle Scholar
Corbet, S.A. 1995. Insects, plants and succession: advantages of long-term set-aside. Agriculture, Ecosystems and Environment, 53: 201217.CrossRefGoogle Scholar
Efron, B., and Tibshirani, R.J. 1993. An introduction to the bootstrap. Chapman & Hall, London.CrossRefGoogle Scholar
Evans, F.C. 1986. Bee–flower interactions on an old field in southeastern Michigan. In Proceedings of the 9th North American Prairie Conference, Moorhead, Minnesota, 1984. Edited by Clambey, G.K. and Pemble, R.H.. Tricollege University Centre for Environmental Studies, Fargo, North Dakota. pp. 103109.Google Scholar
Fleming, R.A., and Tatchell, G.M. 1995. Shifts in the flight period of British aphids: a response to climate warming? In Insects in a changing environment. Edited by Harrington, R. and Stork, N.E.. Academic Press, New York.Google Scholar
Gotelli, N.J., and Entsminger, G.L. 2004. EcoSim: null models software for ecology. Version 7.0 [computer program]. Acquired Intelligence Inc. and Kesey-Bear. Available from http://homepages.together.net/gentsmin/ecosim.htm.Google Scholar
Heinrich, B., and Chavarria, G. 2001. Bumble bee energetics and conservation. In Bees and crop pollination — crisis, crossroads, conservation. Edited by Stubbs, C.S. and Drummond, F.A.. Entomological Society of America, Lanham, Maryland. pp. 6984.Google Scholar
Herrera, C.M. 1988. Variation in mutualisms: the spatio-temporal mosaic of a pollinator assemblage. Biological Journal of the Linnean Society, 35: 95125.CrossRefGoogle Scholar
Kassas, M. 2002. Biodiversity: gaps in knowledge. The Environmentalist, 22: 4349.CrossRefGoogle Scholar
Kerr, J.T. 2001. Butterfly species richness patterns in Canada: energy, heterogeneity, and the potential consequences of climate change. Conservation Ecology [online], 5(1): Art. 10. Available from http://www.consecol.org/vol5/iss1/art10/.Google Scholar
Kerr, J.T., and Packer, L. 1997. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature (London), 385: 252254.CrossRefGoogle Scholar
Kevan, P.G. 1999. Pollinators as bioindicators of the state of the environment: species, activity and diversity. Agriculture, Ecosystems and Environment, 74: 373393.CrossRefGoogle Scholar
Kevan, P.G., and Viana, B.F. 2004. The global decline of pollination services. Biodiversity, 4: 38.CrossRefGoogle Scholar
Kevan, P.G., Greco, C.F., and Belaoussoff, S. 1997. Log-normality of biodiversity and abundance in diagnosis and measuring of ecosystem health: pesticide stress on pollinators on blueberry heaths. Journal of Applied Ecology, 34: 11221136.CrossRefGoogle Scholar
Kremen, C., Williams, N.M., and Thorp, R. 2002. Crop pollination from native bees at risk from agricultural intensification. Proceedings of the National Academy of Sciences of the United States of America, 99: 1681216816.CrossRefGoogle ScholarPubMed
Krombein, J.V., Hurd, P.D. Jr., and Smith, D.R. 1979. Catalog of Hymenoptera in America north of Mexico. Vol. I and II. Smithsonian Institution Press, Washington, D.C.Google Scholar
LaBerge, W.E. 1972. A revision of the bees of the genus Andrena of the western hemisphere. Part V. Gonandrena, Geissandrena, Parandrena, Pelicandrena. Transactions of the American Entomological Society, 98: 271358.Google Scholar
LaBerge, W.E. 1973. A revision of the bees of the genus Andrena of the western hemisphere. Part VI. Subgenus Trachandrena. Transactions of the American Entomological Society, 99: 235371.Google Scholar
LaBerge, W.E. 1977. A revision of the bees of the genus Andrena of the western hemisphere. Part VIII. Subgenera Thysandrena, Dasyandrena, Psammandrena, Rhacandrena, Euandrena and Oxyandrena. Transactions of the American Entomological Society, 103: 1143.Google Scholar
LaBerge, W.E. 1980. A revision of the bees of the genus Andrena of the western hemisphere. Part X. Subgenus Andrena. Transactions of the American Entomological Society, 106: 395525.Google Scholar
LaBerge, W.E. 1987. A revision of the bees of the genus Andrena of the western hemisphere. Part XII. Subgenera Leucandrena, Ptilandrena, Scoliandrena, and Melandrena. Transactions of the American Entomological Society, 112: 191248.Google Scholar
LaBerge, W.E. 1989. A revision of the bees of the genus Andrena of the western hemisphere. Part XIII. Subgenera Simandrena and Taeniandrena. Transactions of the American Entomological Society, 115: 156.Google Scholar
Liow, L.H., Sodhi, N.S., and Elmqvist, T. 2001. Bee diversity along a disturbance gradient in tropical lowland forests of south-east Asia. Journal of Applied Ecology, 38: 180192.CrossRefGoogle Scholar
Loreau, M. 2000. Biodiversity and ecosystem functioning: recent theoretical advances. Oikos, 91: 317.CrossRefGoogle Scholar
MacKay, P.A. 1970. Observations on periodicity and ecological interactions of the Apoidea and their parasite complexes in an Ontario biotope. M.Sc. thesis, University of Toronto, Ontario.Google Scholar
MacKay, P.A., and Knerer, G. 1979. Seasonal occurrence and abundance in a community of wild bees from an old field habitat in southern Ontario. The Canadian Entomologist, 111: 367376.CrossRefGoogle Scholar
Magurran, A.E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, New Jersey.CrossRefGoogle Scholar
Magurran, A.E. 2004. Measuring biological diversity. Blackwell Publishing, Oxford.Google Scholar
Margules, C.R., Pressey, R.L., and Williams, P.H. 2002. Representing biodiversity: data and procedures for identifying priority areas for conservation. Journal of Biosciences, 27: 309326.CrossRefGoogle ScholarPubMed
Marlin, J.C., and LaBerge, W.E. 2001. The native bee fauna of Carlinville, Illinois, revisited after 75 years: a case for persistence. Conservation Ecology [online], 5(1): Art. 9. Available from http://www.consecol.org/Journal/vol5/iss1/art9/.CrossRefGoogle Scholar
McGarigal, K., Cushman, S., and Stafford, S. 2000. Multivariate statistics for wildlife and ecology research. Springer, New York.CrossRefGoogle Scholar
McGinley, R.J. 1986. Studies of Halictinae (Apoidea: Halictidae). I. Revision of new world Lasioglossum Curtis. Smithsonian Contributions to Zoology, 429: 1294.CrossRefGoogle Scholar
Michener, C.D. 2000. The bees of the world. The John Hopkins University Press, Baltimore, Maryland.Google Scholar
Michener, C.D., McGinley, R.J., and Danforth, B.N. 1994. The bee genera of North and Central America. Smithsonian Institution Press, Washington, D.C.Google Scholar
Minckley, R.L., Cane, J.H., Kervin, L., and Roulston, T. 1999. Spatial predictability and resource specialization of bees (Hymenoptera: Apoidea) at a superabundant, widespread resource. Biological Journal of the Linnean Society, 67: 119147.CrossRefGoogle Scholar
Mitchell, T.B. 1960. Bees of the eastern United States. Vol. I. North Carolina Agricultural Experiment Station Technical Bulletin 141.Google Scholar
Mitchell, T.B. 1962. Bees of the eastern United States. Vol. II. North Carolina Agricultural Experiment Station Technical Bulletin 152.Google Scholar
Njau, E.C. 2005. Expected halt in the current global warming trend? Renewable Energy, 30: 743752.CrossRefGoogle Scholar
Parmesan, C., and Yohe, G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature (London), 421: 3742.CrossRefGoogle ScholarPubMed
Pearson, J.F.W. 1933. Studies on the ecological relations of bees in the Chicago region. Ecological Monographs, 3: 373441.CrossRefGoogle Scholar
Petchey, O.L. 2000. Species diversity, species extinctions, and ecosystem function. The American Naturalist, 155: 696702.CrossRefGoogle Scholar
Preston, F.W. 1948. The commonness, and rarity, of species. Ecology, 29: 254283.CrossRefGoogle Scholar
Rasmont, P., Leclerq, J., Jacob-Remacle, A., Pauly, A., and Gaspar, C. 1992. The faunistic drift of Apoidea in Belgium. In Bees for pollination: Proceedings of the Workshop of the Community Programme of Research and Technological Development in the field of Competitiveness of Agriculture and Management of Agricultural Resources (1989–1993), Brussels, Belgium, 1–2 March 1992. Edited by Bruneau, E.. Commission of the European Communities, Luxembourg. pp. 6587.Google Scholar
Richards, K.W., and Kevan, P.G. 2002. Aspects of bee biodiversity, crop pollination, and conservation in Canada. In Pollinating bees — the conservation link between agriculture and nature. Edited by Kevan, P.G. and Fonseca, V.L. Imperatriz. Ministry of Environment, Brasilia. pp. 7794.Google Scholar
Robertson, C. 1929. Flowers and insects. List of visitors to four hundred and fifty-three flowers. Science Press Printing Company, Lancaster, Pennsylvania.Google Scholar
Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C., and Pounds, J.A. 2003. Fingerprints of global warming on wild animals and plants. Nature (London), 421: 5760.CrossRefGoogle ScholarPubMed
Roy, D.B., and Sparks, T.H. 2000. Phenology of British butterflies and climate change. Global Change Biology, 6: 407416.CrossRefGoogle Scholar
Scott-Dupree, C.D., and Winston, M.L. 1987. Wild bee pollinator diversity and abundance in orchard and uncultivated habitats in the Okanagen Valley, British Columbia. The Canadian Entomologist, 119: 735745.CrossRefGoogle Scholar
Simon, J.L., and Bruce, P. 1991. Resampling: a tool for everyday statistical work. Chance: New Directions for Statistics and Computers, 4: 2232.CrossRefGoogle Scholar
Sneath, P.H.A., and Sokal, R.R. 1973. Numerical taxonomy: the principles and practice of numerical classification. Freeman, San Francisco, California.Google Scholar
Sparks, T.H., and Carey, P.D. 1995. The response of species to climate over two centuries: an analysis of the Marsham phenological record, 1736–1947. Journal of Ecology, 83: 321329.CrossRefGoogle Scholar
Sparks, T.H., and Yates, T.J. 1997. The effect of spring temperature on the appearance dates of British butterflies, 1883–1993. Ecography, 20: 368374.CrossRefGoogle Scholar
Sprent, P. 1998. Data driven statistical methods. Chapman & Hall, London.Google Scholar
Steege, H., and Zagt, R. 2002. Density and diversity. Nature (London), 417: 698699.CrossRefGoogle ScholarPubMed
Steffan-Dewenter, I., and Tscharntke, T. 1995. Bees on set-aside fields: impacts of flower abundance, vegetation and field age. Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie, 10: 319322.Google Scholar
Steffan-Dewenter, I., and Tscharntke, T. 2001. Succession of bee communities on fallows. Ecography, 24: 8393.CrossRefGoogle Scholar
Sugihara, G. 1980. Minimal community structure: an explanation of species abundance patterns. American Naturalist, 116: 770787.CrossRefGoogle ScholarPubMed
Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., Ferreira de Siqueira, M., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Phillips, O.L., and Williams, S.E. 2004. Extinction risk from climate change. Nature (London), 427: 145148.CrossRefGoogle ScholarPubMed
Volkov, I., Banavar, J.R., Hubbell, S.P., and Maritan, A. 2003. Neutral theory and relative species abundance in ecology. Nature (London), 424: 10351037.CrossRefGoogle ScholarPubMed
Walther, G., Post, E., Convey, P., Menzels, A., Parmesan, C., and Beebee, T.J.C. 2002. Ecological responses to recent climate change. Nature (London), 416: 389395.CrossRefGoogle ScholarPubMed
Williams, C.B. 1986. Environmental changes and the distribution of British bumble bees (Bombus Latr.). Bee World, 67: 5061.CrossRefGoogle Scholar
Williams, N.M., Minckley, R.L., and Silveira, F.A. 2001. Variation in native bee faunas and its implications for detecting community changes. Conservation Ecology [online], 5(1): Art. 7. Available from http://www.consecol.org/vol5/iss1/art7/.CrossRefGoogle Scholar
Williams, P.H. 1982. The distribution and decline of British bumble bees, Bombus. Journal of Apicultural Research, 21: 236245.CrossRefGoogle Scholar
Wilson, W.G., Lundberg, P., Vazquez, D.P., Shurin, J.B., Smith, M.D., Langford, W., Gross, K.L., and Mittelbach, G.G. 2003. Biodiversity and species interactions: Extending Lotka–Volterra community theory. Ecology Letters, 6: 944952.CrossRefGoogle Scholar
Winston, J.E., and Graf, L.H. 1982. Native bee pollinators of berry crops in the Fraser Valley of British Columbia, Canada. Journal of the Entomological Society of British Columbia, 79: 1420.Google Scholar
Wodziczko, A. 1947. Stepowienie Wielkopolski. Cz. I. [The transformation of Great Poland into a steppe region. Part I.] Prace Komisji Matematyczno-Przyrodniczej, Seria B, 10: 139234.Google Scholar
Zar, J. 1999. Biostatistical analysis. 4th ed. Prentice-Hall Inc., Upper Saddle River, New Jersey.Google Scholar
Zayed, A., and Grixti, J.C. 2005. ComRAND: randomization software for examining community diversity change [online]. Version 1.3 [computer program]. Available from http://www.yorku.ca/bugsrus/comrand.htm.Google Scholar
Zayed, A., and Packer, L. 2005. Complementary sex determination substantially increases extinction proneness in haplodiploid populations. Proceedings of the National Academy of Sciences of the United States of America, 102: 1074210746.CrossRefGoogle ScholarPubMed
Zayed, A., Roubik, D.W., and Packer, L. 2004. Use of diploid male frequency data as an indicator of pollinator decline. Proceedings of the Royal Society of London, Series B: Biological Sciences, 271: S9–S12.CrossRefGoogle ScholarPubMed