Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T04:23:59.720Z Has data issue: false hasContentIssue false

CAUSES AND ECOLOGICAL IMPLICATIONS OF EGG RETENTION IN THE GYPSY MOTH, LYMANTRIA DISPAR (L.) (LEPIDOPTERA: LYMANTRIIDAE).1

Published online by Cambridge University Press:  31 May 2012

Pedro Barbosa
Affiliation:
Department of Entomology, University of Maryland, College Park, Maryland, USA20742
Peter Martinat
Affiliation:
Department of Entomology, University of Maryland, College Park, Maryland, USA20742

Abstract

The role of starvation, the occurrence of mating, and delays and the onset of mating on the retention of eggs by the gypsy moth, Lymantria dispar (L.), were evaluated. The mating status of female gypsy moths did influence egg retention.

Mating delays did not affect egg retention. Differences in the number of females retaining some eggs were found among females whose larvae had been reared on different host plants. The amount of food consumed had a significant effect on egg retention. Partial starvation had an impact on egg retention and on larval and pupal development, pupal size, and total egg production. The greater the starvation the greater the egg retention. The ecological implications of these results are discussed.

Résumé

On a évalué l’effet de la privation, de l’accouplement et de retards de l’accouplement sur la rétention des oeufs chez la spongieuse, Lymantria dispar (L.). Les retards de l’accouplement n’ont pas affecté la rétention des oeufs.

On a trouvé des différences dans le nombre de femelles qui retenaient des oeufs chez celles dont les larves avaient été élevées sur des plantes différentes. La quantité de nourriture a eu un effet significatif sur la rétention des oeufs. La privation partielle a affecté la rétention des oeufs, le développement larvaire et pupal, la taille des pupes, et la production totale d’oeufs. Plus la privation était grande, plus la rétention des oeufs était marquée. La signification écologique de ces résultats est commentée.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrewartha, H.G., and Birch, L.C.. 1984. The ecological web. More on the distribution and abundance of animals. Univ. Chicago Press, Chicago, IL.Google Scholar
Armbrust, E.J., and Gyrisco, G.G.. 1968. The influence of some physical and biological factors on the phototactic response of the alfalfa weevil, Hypera postica. Ann. ent. Soc. Am. 61: 15611566.CrossRefGoogle Scholar
Barbosa, P. 1978. Host plant exploitation by the gypsy moth, Lymantria dispar (L.). Ent. Exp. Appl. 24: 228237.CrossRefGoogle Scholar
Barbosa, P., and Greenblatt, J.A.. 1979. Suitability, digestibility and assimilation of various host plants of the gypsy moth, Lymantria dispar (L.). Oecologia 43: 111119.CrossRefGoogle ScholarPubMed
Barbosa, P., Cranshaw, W., and Greenblatt, J.A.. 1981. Influence of food quantity and quality on polymorphic dispersal behaviors in the gypsy moth, Lymantria dispar. Can. J. Zool. 59: 293296.CrossRefGoogle Scholar
Barbosa, P., Waldvogel, M., Martinat, P., and Douglass, L.W.. 1983. Developmental and reproductive performances of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), on selected hosts common to mid-Atlantic and southern forests. Environ. Ent. 12: 18581862.CrossRefGoogle Scholar
Barbosa, P., Martinat, P., and Waldvogel, M.. 1986. Effects of multiple plant species diets on the development and reproduction of the gypsy moth, Lymantria dispar (L.). Ecol. Ent. 11: 16.CrossRefGoogle Scholar
Bess, H.A. 1961. Population ecology of the gypsy moth, Porthetria dispar L. (Lepidoptera: Lymantriidae). Conn. Agric. Exp. Stn. Bull. 646. 43 pp.Google Scholar
Blais, J.R. 1953. Effects of the destruction of the current year's foliage of balsam fir on the fecundity and habits of flight of the spruce budworm. Can. Ent. 85: 445448.CrossRefGoogle Scholar
Campbell, R.W. 1969. Studies on gypsy moth population dynamics. pp. 2934in Forest Insect Population Dynamics U.S.D.A. For. Serv. Res. Pap. NE-125.Google Scholar
Campbell, R.W. 1973. Numerical behavior of a gypsy moth population system. For. Sci. 19: 162167.Google Scholar
Campbell, R.W. 1978. Some effects of gypsy moth density on rate of development, pupation time, and fecundity. Ann. ent. Soc. Am. 71: 442448.CrossRefGoogle Scholar
Campbell, R.W., Miller, M.G., Duda, E.J., Biazak, C.E., and Sloan, R.J.. 1976. Man's activities and subsequent gypsy moth egg-mass density along the forest edge. Environ. Ent. 5: 273276.CrossRefGoogle Scholar
Capinera, J.L. 1976. Some implications of population quality and dispersal abilities of first instar larvae on gypsy moth control strategies. Ph.D. dissertation, University of Massachusetts, Amherst, MA.Google Scholar
Capinera, J.L., and Barbosa, P.. 1977. Influence of natural diets and larval density on gypsy moth, Lymantria dispar (Lepidoptera: Orgyiidae) egg mass characteristics. Can. Ent. 109: 13131318.CrossRefGoogle Scholar
Doane, C.C. 1968. Aspects of mating behavior of the gypsy moth. Ann. ent. Soc. Am. 61: 768773.CrossRefGoogle Scholar
Doane, C.C., and McManus, M.L.. 1981. The gypsy moth: Research toward integrated pest management. USDA For. Serv. Tech. Bull. 1584. 757 pp.Google Scholar
Ehrlich, P.R., and Gilbert, L.E.. 1973. Population structure and dynamics of the tropical butterfly Heliconius ethilla. Biotropica 5: 6982.CrossRefGoogle Scholar
Frick, K.E. 1974. Biological control of weeds: Introduction, history, theoretical and practical applications. pp. 204223in Maxwell, F.G., and Harris, F.A. (Eds.), Proceedings of the Summer Institute on Biological Control of Plants, Insects and Diseases. Univ. Press of Mississippi, Jackson, MS.Google Scholar
Heron, R.J. 1955. Studies on the starvation of last instar larvae of the larch sawfly, Pristophora erichsonii (Htg.) (Hymenoptera: Tenthredinidae). Can. Ent. 87: 417427.CrossRefGoogle Scholar
Heron, R.J. 1966. The reproductive capacity of the larch sawfly and some factors of concern in its measurement. Can. Ent. 98: 561578.CrossRefGoogle Scholar
Krischik, V.A., and Denno, R.F.. 1983. Individual population and geographic patterns in plant defense. pp. 463512in Denno, R.F., and McClure, M.S. (Eds.), Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York, NY.CrossRefGoogle Scholar
Lance, D.R., Elkinton, J.S., and Schwalbe, C.P.. 1986. Feeding rhythms of gypsy moth larvae: effect of food quality during outbreaks. Ecology 67: 16501654.CrossRefGoogle Scholar
Leather, S.R. 1984. The effect of adult feeding on the fecundity, weight loss and survival of the pine beauty moth, Panolis flammea (D&S). Oecologia 65: 7074.CrossRefGoogle ScholarPubMed
Lejeune, R.R. 1951. Some ecological factors governing populations of the larch sawfly, Pristiphora erichsonii (Htg.). Can. Ent. 83: 152156.CrossRefGoogle Scholar
Leonard, D. 1970. Effects of starvation on the behaviour, number of larval instars, and developmental rate of Porthetria dispar. J. Insect Physiol. 16: 2531.CrossRefGoogle Scholar
Mason, R.R. 1976. Life tables for a declining population of the douglas-fir tussock moth in northeastern Oregon. Ann. ent. Soc. Am. 69: 948958.CrossRefGoogle Scholar
Mason, R.R., Beckwith, R.C., and Paul, H.G.. 1977. Fecundity reduction during collapse of a Douglas fir tussock moth outbreak in northeast Oregon. Environ. Ent. 6: 623626.CrossRefGoogle Scholar
McLeod, J.M. 1970. The epidemiology of the swaine jack-pine sawfly, Neodiprion swainei Midd. For. Chron. 46: 18.CrossRefGoogle Scholar
Pearson, D.L., and Knisley, C.B.. 1985. Evidence for food as a limiting resource in the life cycle of tiger beetles (Coleoptera: Cicindelidae). Oikos 45: 161168.CrossRefGoogle Scholar
Readshaw, J.L. 1965. A theory of phasmatid outbreak release. Aust. J. Zool. 13: 475490.CrossRefGoogle Scholar
Schultz, J.C. 1983. Habitat selection and foraging tactics of caterpillars in heterogenous trees. pp. 6190in Denno, R.F., and McClure, M.S. (Eds.), Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York, NY.CrossRefGoogle Scholar
Slansky, F. Jr., 1980 a. Effect of food limitation on food consumption and reproductive allocation by adult milkweed bugs, Oncopeltus fasciatus. J. Insect Physiol. 26: 7984.CrossRefGoogle Scholar
Slansky, F. Jr., 1980 b. Quantitative food utilization and reproductive allocation by adult milkweed bugs, Oncopeltus fasciatus. Physiol. Ent. 5: 7386.CrossRefGoogle Scholar
Sokal, R.R., and Rohlf, F.J.. 1981. Biometry. The principles and practice of statistics in biological research, 2nd ed. W.H. Freeman & Co., San Francisco, CA.Google Scholar
Vasic, K., and Jankovic, L.. 1958. A contribution to the knowledge of indicators for the prognostication of the evolution of the gypsy moth gradation. [In Serbo-Croation, English summary.] Zast. Bilja. 56: 3944.Google Scholar
Wallner, W.E., and Walton, G.S.. 1979. Host defoliation: a possible determinant of gypsy moth population quality. Ann. ent. Soc. Am. 72: 6267.CrossRefGoogle Scholar
White, R.R. 1974. Food plant defoliation and larval starvation of Euphydryas editha. Oecologia 14: 307315.CrossRefGoogle ScholarPubMed
Whitham, T.G. 1983. Host manipulation of parasites within-plant variation as a defense against rapidly evolving pests. pp. 1541in Denno, R.F., and McClure, M.S. (Eds.), Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York, NY.CrossRefGoogle Scholar